Jorge Ambrósio

Learn More
The inverse dynamics technique applied to musculoskeletal models, and supported by optimisation techniques, is used extensively to estimate muscle and joint reaction forces. However, the solutions of the redundant muscle force sharing problem are sensitive to the detail and modelling assumptions of the models used. This study presents four alternative(More)
The reverse shoulder replacement, recommended for the treatment of several shoulder pathologies such as cuff tear arthropathy and fractures in elderly people, changes the biomechanics of the shoulder when compared to the normal anatomy. Although several musculoskeletal models of the upper limb have been presented to study the shoulder joint, only a few of(More)
The value of the results of the inverse dynamic analysis procedures used in the study of human tasks is dependent on the quality of the kinematic and kinetic data supplied to the biomechanical model that supports it. The kinematic data, containing the position, velocity and acceleration of all anatomical segments of the biomechanical model, result from the(More)
The dynamic analysis of planar multibody systems with revolute clearance joints, including dry contact and lubrication effects is presented here. The clearances are always present in the kinematic joints. They are known to be the sources for impact forces, which ultimately result in wear and tear of the joints. A joint with clearance is included in the(More)
The inverse dynamic analysis procedures used in the study of the human gait require that the kinematics of the supporting biomechanical model is known beforehand. The first step to obtain the kinematic data is the reconstruction of human spatial motion, i.e., the evaluation of the anatomic points positions that enables to uniquely define the position of all(More)
A phenomenological model of muscle energy expenditure developed in part I of the paper, is utilized as a physiological cost function to estimate the muscle forces during normal locomotion. The model takes into account muscular behaviors typically observed during human gait, such as submaximal activation, variable muscular contraction conditions and muscular(More)
The investigation of multiscale problems in multibody system contacts is a most interesting and timely topic which is subject of intensive research for more than one decade. While many questions have been answered and the mechanically sound description and simulation is increasingly applied in practical engineering problems, this IUTAM Symposium facilitates(More)
Within the framework of multibody dynamics, a 3D large scale neuromusculoskeletal model of the human body is presented. To characterize the dynamics of skeletal muscle, a phenomenological model of energy expenditure was developed for estimating energy consumption during normal locomotion. Such model is able for predicting thermal and mechanical energy(More)
This work addresses the optimal control of multibody systems being actuated with control forces in order to find a dynamically feasible minimum-energy trajectory of the system. The optimal control problem and its constraints are integrated in a discrete version of the equation of motion allowing the minimization of system energy with respect to a discrete(More)