Jordi Mestres

Learn More
Large efforts dedicated to detect somatic alterations across tumor genomes/exomes are expected to produce significant improvements in precision cancer medicine. However, high inter-tumor heterogeneity is a major obstacle to developing and applying therapeutic targeted agents to treat most cancer patients. Here, we offer a comprehensive assessment of the(More)
Pharmacology over the past 100 years has had a rich tradition of scientists with the ability to form qualitative or semi-quantitative relations between molecular structure and activity in cerebro. To test these hypotheses they have consistently used traditional pharmacology tools such as in vivo and in vitro models. Increasingly over the last decade however(More)
The availability of interaction data between small molecule drugs and protein targets has increased substantially in recent years. Using seven different databases, we were able to assemble a total of 4767 unique interactions between 802 drugs and 480 targets, which means that on average every drug is currently acknowledged to interact with 6 targets. The(More)
The recent availability of crystal structures for several diverse cytochromes P450 (CYPs) offers the possibility to perform an up-to-date comparative analysis to identify the degree of structure conservation among this superfamily of enzymes specially relevant for their involvement in drug metabolism and toxicity. A set of 9 CYPs sharing between 10% and 27%(More)
Computational (in silico) methods have been developed and widely applied to pharmacology hypothesis development and testing. These in silico methods include databases, quantitative structure-activity relationships, similarity searching, pharmacophores, homology models and other molecular modeling, machine learning, data mining, network analysis tools and(More)
A novel set of molecular descriptors called SHED (SHannon Entropy Descriptors) is presented. They are derived from distributions of atom-centered feature pairs extracted directly from the topology of molecules. The value of a SHED is then obtained by applying the information-theoretical concept of Shannon entropy to quantify the variability in a(More)
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards(More)
Far from the traditional view of selective drug-target interactions, the recent accumulation of large amounts of interaction data for small-molecule drugs and protein targets requires innovative visualisation and analysis tools that are able to deal with what has become a truly complex system. In this context, network theory offers both a robust and(More)
Molecular information systems play an important part in modern data-driven drug discovery. They do not only support decision making but also enable new discoveries via association and inference. In this review, we outline the scientific requirements identified by the Innovative Medicines Initiative (IMI) Open PHACTS consortium for the design of an open(More)