Learn More
The role of glial inflammatory processes in Alzheimer's disease has been highlighted by recent epidemiological work establishing head trauma as an important risk factor, and the use of anti-inflammatory agents as an important ameliorating factor, in this disease. This review advances the hypothesis that chronic activation of glial inflammatory processes,(More)
Amyloid precursor protein (APP) accumulation is a sensitive marker for the axonal damage that is commonly seen in the brain as the result of head injury. This form of damage is particularly associated with midline structures such as the corpus callosum, although it is not clear whether some areas are more susceptible than others. The aim of this study was(More)
In a previous publication we hypothesized that Alzheimer's disease (AD) can be induced by the age-related increase in expression of beta-amyloid precursor protein (beta APP) in the medial temporal lobe. Head injury has also been identified as a risk factor for AD and as such, similarities should exist between the pathology found after head injury and the(More)
Phosphorus magnetic resonance spectroscopy (31P MRS) was used to determine whether focal cerebral injury caused by unilateral carotid artery occlusion and graded hypoxia in developing rats led to a delayed impairment of cerebral energy metabolism and whether the impairment was related to the magnitude of cerebral infarction. Forty-two 14-day-old Wistar rats(More)
Chronic overexpression of the neurite growth-promoting factor S100beta has been implicated in the pathogenesis of neuritic plaques in Alzheimer's disease. Such plaques are virtually universal in middle-aged Down's syndrome, making Down's a natural model of Alzheimer's disease. We determined numbers of astrocytes overexpressing S100beta, and of neurons(More)
Vascularly isolated cat soleus and gracilis muscles were stimulated to contract isometrically and were then frozen in situ. Adenosine, inosine, and hypoxanthine (nucleosides), and lactate were measured in neutralized, perchloric acid extracts of muscle. During contraction, nucleoside content increased in soleus muscle but changed little in gracilis muscle.(More)
S100beta is an astrocyte-derived uritotrophic' cytokine which has been implicated in the pathogenesis of Alzheimer's disease. S100beta overexpression by plaque-associated astrocytes correlates with growth of abnormal (strophic') neurites in beta-amyloid plaques, one of the major neuropathological hallmarks of Alzheimer's disease. As the characteristic(More)
In a previous study we reported no difference in the overall beta-amyloid protein (beta AP) load between Alzheimer's disease (AD) and senile dementia of the Lewy body type (SDLT). However, it is possible that differences in the morphology of beta AP plaque types exist, analogous to the differences in cytoskeletal pathology found in these two disorders. We(More)
There is increasing evidence of a link between head injury and the subsequent onset of Alzheimer's disease. Deposits of amyloid beta-protein (A beta) are found not only in cases of dementia pugilistica but in some 30% of patients dying after a single episode of severe head injury. Detailed clinicopathological studies have shown that A beta deposition is(More)
Exercise-induced increases in tissue adenosine level vary in muscles having different oxidative capacities. These studies were designed to further evaluate the role of this potent vasodilator as a modulator of active hyperemia in muscles having different intrinsic metabolic profiles. Soleus (slow-twitch oxidative) and gracilis (fast-twitch glycolytic)(More)