Learn More
Motor axon degeneration is a critical but poorly understood event leading to weakness and muscle atrophy in motor neuron diseases. Here, we investigated oxidative stress-mediated axonal degeneration in mice lacking the antioxidant enzyme, Cu,Zn superoxide dismutase (SOD1). We demonstrate a progressive motor axonopathy in these mice and show that Sod1(-/-)(More)
Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and(More)
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARK2/Parkin mutations cause autosomal recessive forms of Parkinson's disease. Upon a loss of mitochondrial membrane potential (DeltaPsi(m)) in human cells, cytosolic Parkin has been reported to be recruited to mitochondria, which is followed by a stimulation of mitochondrial(More)
Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct(More)
Immunotherapy against beta-amyloid peptide (Abeta) is a leading therapeutic direction for Alzheimer disease (AD). Experimental studies in transgenic mouse models of AD have demonstrated that Abeta immunization reduces Abeta plaque pathology and improves cognitive function. However, the biological mechanisms by which Abeta antibodies reduce amyloid(More)
Intracellular beta-amyloid 42 (Abeta42) accumulation is increasingly recognized as an early event in the pathogenesis of Alzheimer's disease (AD). We have developed a doxycycline-inducible adenoviral-based system that directs intracellular Abeta42 expression and accumulation into the endoplasmic reticulum of primary neuronal cultures in a regulated manner.(More)
Early events in Alzheimer's disease (AD) pathogenesis implicate the accumulation of beta-amyloid (Abeta) peptide inside neurons in vulnerable brain regions. However, little is known about the consequences of intraneuronal Abeta on signaling mechanisms. Here, we demonstrate, using an inducible viral vector system to drive intracellular expression of Abeta42(More)
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by motor neuron degeneration. Mutations in Cu,Zn-superoxide dismutase (SOD1) are responsible for 20% of familial ALS cases via a toxic gain of function. In mutant SOD1 transgenic mice, mitochondria of spinal motor neurons develop abnormal morphology, bioenergetic defects and(More)
Perturbation of organellar axonal transport is increasingly recognized as an important contributor in a number of neurodegenerative diseases. Although the specificity of this impairment remains to be elucidated, growing evidence suggests that in certain disease conditions, mitochondria are affected primarily by transport defects. Many hypotheses have been(More)
Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons;(More)