Jordi Garcia-Fernández

Learn More
Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome(More)
All vertebrates possess anatomical features not seen in their closest living relatives, the protochordates (tunicates and amphioxus). Some of these features depend on developmental processes or cellular behaviours that are again unique to vertebrates. We are interested in the genetic changes that may have permitted the origin of these innovations. Gene(More)
Genes of the Hox cluster are restricted to the animal kingdom and play a central role in axial patterning in divergent animal phyla. Despite its evolutionary and developmental significance, the origin of the Hox gene cluster is obscure. The consensus is that a primordial Hox cluster arose by tandem gene duplication close to animal origins. Several homeobox(More)
The amphioxus (Branchiostoma floridae) Hox cluster is a model for the ancestral vertebrate cluster, prior to the hypothesized genome-wide duplications that may have facilitated the evolution of the vertebrate body plan. Here we describe the posterior (5') genes of the amphioxus cluster, and report the isolation of four new homeobox genes. Vertebrates(More)
Once called the 'Rosetta stone' of developmental biology, the homeobox continues to fascinate both evolutionary and developmental biologists. The birth of the homeotic, or Hox, gene cluster, and its subsequent evolution, has been crucial in mediating the major transitions in metazoan body plan. Comparative genomics studies indicate that the more recently(More)
Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae,(More)
The Hox gene cluster has captivated the imagination of evolutionary and developmental biologists worldwide. In this review, the origin of the Hox and ParaHox gene clusters by duplication of a ProtoHox gene cluster, and the changes in their gene numbers in major Metazoan Transitions are reviewed critically. Re-evaluation of existing data and recent findings(More)
Organization into gene clusters is an essential and diagnostic feature of Hox genes. Insect and nematode genomes possess single Hox gene clusters (split in Drosophila); in mammals, there are 38 Hox genes in four clusters on different chromosomes. A collinear relationship between chromosomal position, activation time and anterior expression limit of(More)
One of the main aims of developmental biology is to understand how a single and apparently homogeneous egg cell achieves the intricate complexity of the adult. Here we present two models to explain the generation of developmental patterns through interactions at the gene level. One model considers direct-contact induction between cells while the other takes(More)
D-aspartic acid (D-Asp) is present in invertebrate and vertebrate neuroendocrine tissues, where it carries out important physiological functions and is implicated in nervous system development. We show here that D-Asp is a novel endogenous neurotransmitter in two distantly related animals, a mammal (Rattus norvegicus) and a mollusk (Loligo vulgaris). Our(More)