Jordi García-Ojalvo

Learn More
Chaotic signals have been proposed as broadband information carriers with the potential of providing a high level of robustness and privacy in data transmission. Laboratory demonstrations of chaos-based optical communications have already shown the potential of this technology, but a field experiment using commercial optical networks has not been undertaken(More)
We show that isochronous synchronization between two delay-coupled oscillators can be achieved by relaying the dynamics via a third mediating element, which surprisingly lags behind the synchronized outer elements. The zero-lag synchronization thus obtained is robust over a considerable parameter range. We substantiate our claims with experimental and(More)
In higher organisms, circadian rhythms are generated by a multicellular genetic clock that is entrained very efficiently to the 24-h light-dark cycle. Most studies done so far of these circadian oscillators have considered a perfectly periodic driving by light, in the form of either a square wave or a sinusoidal modulation. However, in natural conditions,(More)
The structural changes that arise as the brain ages influence its functionality. In many cases, the anatomical degradation simply leads to normal aging. In others, the neurodegeneration is large enough to cause neurological disorders (e.g. Alzheimer's disease). Structure and function can be both currently measured using noninvasive techniques, such as(More)
We examine the behavior in the presence of noise of an array of Morris-Lecar neurons coupled via chemical synapses. Special attention is devoted to comparing this behavior with the better known case of electrical coupling arising via gap junctions. In particular, our numerical simulations show that chemical synapses are more efficient than gap junctions in(More)
We investigate an experimentally feasible synthetic genetic network consisting of two phase repulsively coupled repressilators, which evokes multiple coexisting stable attractors with different features. We perform a bifurcation analysis to determine and classify the dynamical structure of the system. Moreover, some of the dynamical regimes found, such as(More)
Living systems are capable of processing multiple sources of information simultaneously. This is true even at the cellular level, where not only coexisting signals stimulate the cell, but also the presence of fluctuating conditions is significant. When information is received by a cell signaling network via one specific input, the existence of other stimuli(More)
Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via(More)
In this study we present a detailed, mechanism-based mathematical framework of Drosophila circadian rhythms. This framework facilitates a more systematic approach to understanding circadian rhythms using a comprehensive representation of the network underlying this phenomenon. The possible mechanisms underlying the cytoplasmic "interval timer" created by(More)
We study experimentally the phenomenon of ghost stochastic resonance in pulse-coupled excitable systems, for input signals distributed among different elements. Specifically, two excitable electronic circuits are driven by different sinusoidal signals that produce periodic spikes at distinct frequencies. Their outputs are sent to a third circuit that(More)