Jordan D. T. Engbers

Learn More
Encoding sensory input requires the expression of postsynaptic ion channels to transform key features of afferent input to an appropriate pattern of spike output. Although Ca(2+)-activated K(+) channels are known to control spike frequency in central neurons, Ca(2+)-activated K(+) channels of intermediate conductance (KCa3.1) are believed to be restricted(More)
The ability for neurons to generate rebound bursts following inhibitory synaptic input relies on ion channels that respond in a unique fashion to hyperpolarization. Inward currents provided by T-type calcium channels (I(T)) and hyperpolarization-activated HCN channels (I(H)) increase in availability upon hyperpolarization, allowing for a rebound(More)
The contribution of Purkinje cells to cerebellar motor coordination and learning is determined in part by the chronic and acute effects of climbing fiber (CF) afferents. Whereas the chronic effects of CF discharge, such as the depression of conjunctive parallel fiber (PF) inputs, are well established, the acute cellular functions of CF discharge remain(More)
Kv4 low voltage-activated A-type potassium channels are widely expressed in excitable cells, where they control action potential firing, dendritic activity and synaptic integration. Kv4 channels exist as a complex that includes K(+) channel-interacting proteins (KChIPs), which contain calcium-binding domains and therefore have the potential to confer(More)
The cerebellum receives sensory information by mossy fiber input from a multitude of sources that require differential signal processing. A compartmentalization of function begins with the segregation of mossy fibers across 10 distinct lobules over the rostrocaudal axis, with tactile receptor afferents prevalent in anterior lobules and vestibular input in(More)
Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral(More)
N-methyl-d-aspartate receptors (NMDARs) mediate critical CNS functions, whereas excessive activity contributes to neuronal damage. At physiological glycine concentrations, NMDAR currents recorded from cultured rodent hippocampal neurons exhibited strong desensitization in the continued presence of NMDA, thus protecting neurons from calcium overload.(More)
Knowledge of intrinsic neuronal firing dynamics is a critical first step to establishing an accurate biophysical model of any neuron. In this study we examined cerebellar Purkinje cells to determine the bifurcations likely to underlie firing dynamics within a biophysically realistic and experimentally supported model. We show that Purkinje cell dynamics are(More)
The output of cerebellar Purkinje cells has been characterized extensively and theories regarding the role of simple spike (SS) and complex spike (CS) patterns have evolved through many different studies. A bistable pattern of SS output can be observed in vitro; however, differing views exist regarding the occurrence of bistable SS output in vivo.(More)
Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and(More)