Jordan D. T. Engbers

Learn More
The output of cerebellar Purkinje cells has been characterized extensively and theories regarding the role of simple spike (SS) and complex spike (CS) patterns have evolved through many different studies. A bistable pattern of SS output can be observed in vitro; however, differing views exist regarding the occurrence of bistable SS output in vivo.(More)
Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and(More)
T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion(More)
High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to(More)
Our previous work reported that KCa3.1 (IKCa) channels are expressed in CA1 hippocampal pyramidal cells and contribute to the slow afterhyperpolarization that regulates spike accommodation in these cells. The current report presents data from single cell RT-PCR that further reveals mRNA in CA1 cells that corresponds to the sequence of an IKCa channel from(More)
The ability for a neuron to distinguish important input signals from background noise is essential for proper circuit function. Several mechanisms exist to enhance signal detection. For example, short-term facilitation enhances burst transmission, while information from single spikes is transmitted more effectively through synapses that exhibit depression(More)
Cerebellar Purkinje cells are contacted by up to ~150,000 parallel fibers from granule cells, of which only a subset will convey sensory information at any given time. Purkinje cells must then possess the means to respond effectively to meaningful parallel fiber input over background noise. Previous work has shown that parallel fiber excitatory postsynaptic(More)
Purkinje cells have been previously modeled as a system undergoing a saddle-node bifurcation of fixed points from rest to firing and a saddle homoclinic orbit bifur-cation from firing to rest. In vitro, this dynamical structure is a result of the neuron's intrinsic membrane properties and is associated with bistability within a limited range of low firing(More)
  • 1