Jordan Brankov

Learn More
By means of differential scanning calorimetry and from a review of published data we demonstrate in this work that low-molecular weight kosmotropic substances (water-structure makers) of different chemical structure such as disaccharides, proline, and glycerol have identical effects on the phase behavior of several kinds of phospholipids and glycolipids.(More)
We consider the discrete-time evolution of a finite number of particles obeying the totally asymmetric exclusion process with backward-ordered update on an infinite chain. Our first result is a determinant expression for the conditional probability of finding the particles at given initial and final positions, provided that they start and finish(More)
We propose a bridge between the theory of exactly solvable models and the investigation of traffic flow. By choosing the activities in an apropriate way the dimer configurations of the Kasteleyn model on a hexagonal lattice can be interpreted as space-time trajectories of cars. This then allows for a calculation of the flow-density relationship (fundamental(More)
Computer simulations of the totally asymmetric simple-exclusion process on chains with a double-chain section in the middle are performed in the case of random-sequential update. The outer ends of the chain segments connected to the middle double-chain section are open, so that particles are injected at the left end with rate alpha and removed at the right(More)
The applicability of the concepts of finite-size scaling and universality to nonequilibrium phase transitions is considered in the framework of the one-dimensional totally asymmetric simple-exclusion process with open boundaries. In the thermodynamic limit there are boundary-induced transitions both of the first and second order between steady-state phases(More)
Exact density profiles in the steady state of the one-dimensional fully asymmetric simple-exclusion process on a semi-infinite chain are obtained in the case of forward-ordered sequential dynamics by taking the thermodynamic limit in our recent exact results for a finite chain with open boundaries. The corresponding results for sublattice-parallel dynamics(More)
Finite-size scaling expressions for the current near the continuous phase transition and for the local density near the first-order transition are found in the steady state of the one-dimensional fully asymmetric simple-exclusion process with open boundaries and discrete-time dynamics. The corresponding finite-size scaling variables are identified as the(More)
We consider the asymmetric simple exclusion process (TASEP) on an open network consisting of three consecutively coupled macroscopic chain segments with a shortcut between the tail of the first segment and the head of the third one. The model was introduced by Y.-M. Yuan et al. [J. Phys. A 40, 12351 (2007)] to describe directed motion of molecular motors(More)