Joost Willemse

Learn More
The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea(More)
Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective(More)
The AtSERK1 protein is a plasma membrane-located LRR receptor-like serine threonine kinase that is transiently expressed during plant embryogenesis. Our results show that AtSERK1 interacts with the kinase-associated protein phosphatase (KAPP) in vitro. The kinase interaction (KI) domain of KAPP does not interact with a catalytically inactive kinase mutant.(More)
In bacteria that divide by binary fission, cell division starts with the polymerization of the tubulin homolog FtsZ at mid-cell to form a cell division scaffold (the Z ring), followed by recruitment of the other divisome components. The current view of bacterial cell division control starts from the principle of negative checkpoints that prevent incorrect(More)
Members of the family of SsgA-like proteins (SALPs) are found exclusively in sporulating actinomycetes, and SsgA itself activates sporulation-specific cell division. We previously showed that SALPs play a chaperonin-like role in supporting the function of enzymes involved in peptidoglycan maintenance (PBPs and autolysins). Here we show that SsgA localizes(More)
Imaging of low abundance proteins in time and space by fluorescence microscopy is typically hampered by host-cell autofluorescence. Streptomycetes are an important model system for the study of bacterial development, and undergo multiple synchronous cell division during the sporulation stage. To analyse this phenomenon in detail, fluorescence microscopy,(More)
Actinomycetes are antibiotic-producing filamentous bacteria that have a mycelial life style. The members of the three genera classified in the family Streptomycetaceae, namely Kitasatospora, Streptacidiphilus and Streptomyces, are difficult to distinguish using phenotypic properties. Here we present biochemical and genetic evidence that helps underpin the(More)
Streptomycetes are filamentous bacteria that produce numerous valuable compounds, including the majority of clinically used antibiotics. At an industrial scale, most of these compounds are produced in bioreactors. Growth of streptomycetes under these conditions is characterized by the formation of complex mycelial particles, whose sizes follow a bimodal(More)
The Tat pathway transports folded proteins across the bacterial cytoplasmic membrane and is a major route of protein export in the Streptomyces genus of bacteria. In this study, we have examined the localization of Tat components in the model organism Streptomyces coelicolor by constructing enhanced green fluorescent protein (eGFP) and mCherry fusions with(More)
Far from being simple unicellular entities, bacteria have complex social behaviour and organization, living in large populations, and some even as coherent, multicellular entities. The filamentous streptomycetes epitomize such multicellularity, growing as a syncytial mycelium with physiologically distinct hyphal compartments separated by infrequent(More)