Learn More
Using high-resolution MS-based proteomics in combination with multiple protease digestion, we profiled, with on average 90% sequence coverage, all 13 viral proteins present in an human adenovirus (HAdV) vector. This in-depth profile provided multiple peptide-based evidence on intrinsic protease activity affecting several HAdV proteins. Next, the generated(More)
Nature uses bottom-up approaches for the controlled assembly of highly ordered hierarchical structures with defined functionality, such as organelles, molecular motors, and transmembrane pumps. The field of bionanotechnology draws inspiration from nature by utilizing biomolecular building blocks such as DNA, proteins, and lipids, for the (self-) assembly of(More)
Methionine oxidation in the ubiquitous calcium signaling protein calmodulin (CaM) is known to disrupt downstream signaling and target CaM for proteasomal degradation. The susceptibility of CaM to oxidation in the different conformations that are sampled during calcium signaling is currently not well defined. Using an integrative mass spectrometry (MS)(More)
In this biomechanical study a model is introduced of the force phenomena which seem to dominate in the hallux valgus complex during standing and push-off. The model was verified by measuring the forces under the big toe in three directions with the help of a force plate. It is shown that the force in the musculus flexor hallucis longus is accompanied by(More)
The propensity for capsid disassembly and uncoating of human adenovirus is modulated by interactions with host cell molecules like integrins and alpha defensins. Here, we use atomic force microscopy (AFM) nanoindentation to elucidate, at the single-particle level, the mechanism by which binding of these host molecules affects virus particle elasticity. Our(More)
The interaction between a viral capsid and its genome governs crucial steps in the life cycle of a virus, such as assembly and genome uncoating. Tuning cargo-capsid interactions is also essential for successful design and cargo delivery in engineered viral systems. Here we investigate the interplay between cargo and capsid for the picorna-like Triatoma(More)
Analysis of the size and mass of nanoparticles, whether they are natural biomacromolecular or synthetic supramolecular assemblies, is an important step in the characterization of such molecular species. In recent years, electrospray ionization (ESI) has emerged as a technology through which particles with masses up to 100 MDa can be ionized and transferred(More)
Over the last two decades, native mass spectrometry (MS) has emerged as a valuable tool to study intact proteins and noncovalent protein complexes. Studied experimental systems range from small-molecule (drug)-protein interactions, to nanomachineries such as the proteasome and ribosome, to even virus assembly. In native MS, ions attain high m/z values,(More)
Accurate mass analysis can provide useful information on the stoichiometry and composition of protein-based particles, such as virus-like assemblies. For applications in nanotechnology and medicine, such nanoparticles are loaded with foreign cargos, making accurate mass information essential to define the cargo load. Here, we describe modifications to an(More)