Joost A. Keuskamp

Learn More
After oxygen, sulfate is the most important oxidant for the oxidation of organic matter in mangrove forest soils. As sulfate reducers are poor competitors for common electron donors, their relative success depends mostly on the surplus of carbon that is left by aerobic organisms due to oxygen depletion. We therefore hypothesized that sulfate-cycling in(More)
Eutrophication of coastal waters can have consequences for the growth, function and soil processes of coastal wetlands. Our aims were to assess how nutrient enrichment affects growth, biomass allocation and decomposition of plant tissues of a common and widespread mangrove, Avicennia marina, and how eutrophication drives changes in below-ground carbon(More)
Avicennia and Rhizophora are globally occurring mangrove genera with different traits that place them in different parts of the intertidal zone. It is generally accepted that the oxidizing capacity of Avicennia roots is larger than that of Rhizophora roots, which initiates more reduced conditions in the soil below the latter genus. We hypothesize that the(More)
Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction.(More)
  • 1