Learn More
Regioselective glycosylation of flavonoids cannot be easily achieved due to the presence of several hydroxyl groups in flavonoids. This hurdle could be overcome by employing uridine diphosphate-dependent glycosyltransferases (UGTs), which use nucleotide sugars as sugar donors and diverse compounds including flavonoids as sugar acceptors. Quercetin(More)
Hydroxycinnamoyltransferases (HCTs) catalyze the transfer of the cinnamoyl moiety from hydroxycinnamoyl-CoA to various acceptors such as shikimic acid, quinic acid, hydroxylated acid, and glycerol. Four rice HCT homologues (OsHCT1-4) to tobacco HST were cloned, and OsHCT4 was expressed in Escherichia coli as a glutathione S-transferase fusion protein. Using(More)
Flavonoids are plant secondary metabolites containing several hydroxyl groups that are targets for modification reactions such as methylation and glycosylation. In plants, flavonoids are present as glycones. Although glucose is the most common sugar attached to flavonoids, arabinose, galactose, glucuronic acid, rhamnose, and xylose are also linked to(More)
Two bioactive O-methylflavonoids, sakuranetin (7-O-methylnaringenin) and ponciretin (7-O-methylnaringenin), were synthesized in Escherichia coli. Sakuranetin inhibits germination of Magnaporthe grisea, and ponciretin is a potential inhibitor of Helicobacter pylori. To achieve this, we reconstructed the naringenin biosynthesis pathway in E. coli. First, the(More)
Flavonoids are predominantly found as glycosides in plants. The glycosylation of flavonoids is mediated by uridine diphosphate-dependent glycosyltransferases (UGT). UGTs attach various sugars, including arabinose, glucose, galactose, xylose, and glucuronic acid, to flavonoid aglycones. Two UGTs isolated from Arabidopsis thaliana, AtUGT78D2 and AtUGT78D3,(More)
Most flavonoids are glycosylated and the nature of the attached sugar can strongly affect their physiological properties. Although many flavonoid glycosides have been synthesized in Escherichia coli, most of them are glucosylated. In order to synthesize flavonoids attached to alternate sugars such as glucuronic acid and galactoside, E. coli was genetically(More)
Most flavonoids found in plants exist as glycosides, and glycosylation status has a wide range of effects on flavonoid solubility, stability, and bioavailability. Glycosylation of flavonoids is mediated by Family 1 glycosyltransferases (UGTs), which use UDP-sugars, such as UDP-glucose, as the glycosyl donor. AtGT-2, a UGT from Arabidopsis thaliana, was(More)
Biocatalysts are a valuable tool for the structural modification of fine chemicals. Flavonoids possess several biological activities, which are correlated to their antioxidant activity. The numbers of hydroxyl groups in flavonoids are critical for their antioxidant activity. Development of biocatalysts for hydroxylation of flavonoids is challenging because(More)
Within the secondary metabolite class of flavonoids, which consist of more than 10,000 known structures, flavones define one of the largest subgroups. The diverse function of flavones in plants as well as their various roles in the interaction with other organisms offers many potential applications including in human nutrition and pharmacology. We used two(More)
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside(More)