Learn More
A characteristic hallmark of Aspergillus niger is the formation of black conidiospores. We have identified four loci involved in spore pigmentation of A. niger by using a combined genomic and classical complementation approach. First, we characterized a newly isolated color mutant, colA, which lacked pigmentation resulting in white or colorless conidia.(More)
Filamentous fungi such as Aspergillus niger are well known for their exceptionally high capacity for secretion of proteins, organic acids, and secondary metabolites and they are therefore used in biotechnology as versatile microbial production platforms. However, system-wide insights into their metabolic and secretory capacities are sparse and rational(More)
Exposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation of Aspergillus niger in carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revealed that this differentiation strongly affects product(More)
Galactofuranose (Galf) is the five-membered ring form of galactose exclusively found in nonmammalian species, among which several are pathogens. To determine the putative role of this carbohydrate in host-pathogen interactions, we synthesized multivalent gold nanoparticles carrying Galf (Galf-GNPs) and show that they are recognized by the EB-A2 antibody,(More)
Aspergillus niger possesses a galactofuranosidase activity, however, the corresponding enzyme or gene encoding this enzyme has never been identified. As evidence is mounting that enzymes exist with affinity for both arabinofuranose and galactofuranose, we investigated the possibility that α-L-arabinofuranosidases, encoded by the abfA and abfB genes, are(More)
Galactofuranose (Galf)-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Galf-containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall.(More)
Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. The 33.6 megabase genome of P. cinnabarinus was(More)
Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide(More)
The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing(More)
  • 1