Jonghye Choi

Learn More
SILVER NANOPARTICLES (SIZE 7.9 ± 0.95 nm, dosage: 250 mg/kg) were orally administered to pregnant rats. At 4 days after parturition, four pups were randomly selected (one pup from one dam) and silver level in liver, kidney, lung and brain was determined by ICP-MS and electron microscope. As results, silver nanoparticles highly accumulated in the tissues of(More)
Combined repeated-dose toxicity study of citrate-capped silver nanoparticles (7.9 ± 0.95 nm) with reproduction/developmental toxicity was investigated in rats orally treated with 62.5, 125 and 250 mg/kg, once a day for 42 days for males and up to 52 days for females. The test was performed based on the Organization for Economic Cooperation and Development(More)
Toxicokinetics of zinc oxide nanoparticles (ZnONP) was studied in rats via a single intravenous (iv) injection and a single oral administration (3 mg/kg or 30 mg/kg), respectively. Blood concentrations of zinc (Zn) were monitored for 7 d and tissue distribution were determined in liver, kidneys, lung, spleen, thymus, brain, and testes. To ascertain the(More)
OBJECTIVES Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models (KeraSkin ((TM)) ) and the results were compared to those of an in vivo animal test. METHODS Skin models were incubated with nanoparticles for a(More)
Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDermTM skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs),(More)
Recent toxicity studies of zinc oxide nanoparticles by oral administration showed relatively low toxicity, which may be resulted from low bioavailability. So, the intrinsic toxicity of zinc oxide nanoparticles needs to be evaluated in the target organs by intravenous injection for full systemic concentration of the administered dosage. Although the exposure(More)
  • 1