Jonghwun Jung

Learn More
A multiphase transient non-Newtonian three-dimensional (3-D) computational fluid dynamics (CFD) simulation has been performed for pulsatile hemodynamics in an idealized curved section of a human coronary artery. We present the first prediction, to the authors' knowledge, of particulate buildup on the inside curvature using the multiphase theory of dense(More)
The behavior of blood cells in disturbed flow regions of arteries has significant relevance for understanding atherogenesis. However, their distribution with red blood cells (RBCs) and leukocytes is not so well studied and understood. Our three-phase computational fluid dynamics approach including plasma, RBCs, and leukocytes was used to numerically(More)
Hemodynamic data on the roles of physiologically critical blood particulates are needed to better understand cardiovascular diseases. The blood flow patterns and particulate buildup were numerically simulated using the multiphase non-Newtonian theory of dense suspension hemodynamics in a realistic right coronary artery (RCA) having various cross sections.(More)
  • 1