Jongbaeg Kim

Learn More
A new breed of in-plane bi-directional MEMS actuators based on controlled electrothermal buckling and electromagnetic Lorentz force has been demonstrated under both dc and ac operations. Experimentally, bi-directional actuators made by the standard surface-micromachining process have a lateral actuation range of several microns and can exert forces over 100(More)
An existing bond graph of a squirrel cage induction motor was modified to make the bond graph physically more representative. The intent was to form a one-to-one correspondence between motor components and bond graph elements. Components explicitly represented include the stator coils, the squirrel cage rotor bars, and the magnetic flux routing section. The(More)
We have demonstrated lithography-free, simple , and large area fabrication method for subwavelength antireflection structures (SAS) to achieve low reflectance of silicon (Si) surface. Thin film of Pt/Pd alloy on a Si substrate is melted and agglomerated into hemispheric nanodots by thermal dewetting process, and the array of the nanodots is used as etch(More)
Electric-field assisted growth and self-assembly of intrinsic silicon nanowires, in-situ, is demonstrated. The nanowires are seen to respond to the presence of a localized DC electric field set up between adjacent MEMS structures. The response is expressed in the form of improved nanowire order, alignment, and organization while transcending a gap. This(More)
—We have demonstrated microfabricated, monolithic two degrees of freedom (two-dimensional) electrostatic torsional mirrors using a three-mask process on silicon-on-insulator wafer with a single plastic deformation step. The mirror operated independently in two orthogonal directions as controlled by two sets of self-aligned angular vertical combs. The(More)
We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent(More)
Catalytic iron nanoparticles generated by spark discharge were used to site-selectively grow carbon nanotubes (CNTs) and control their density. The generated aerosol nanoparticles were deposited on a cooled substrate by thermophoresis. The shadow mask on top of the cooled substrate enabled patterning of the catalytic nanoparticles and, thereby, patterning(More)
Controlled synthesis and integration of carbon nanotubes (CNTs) remain important areas of study to develop practical carbon-based nanodevices. A method of controlling the number of CNTs synthesized depending on the size of the catalyst was characterized using nanostencil lithography, and the critical dimension for the nanoaperture produced on a stencil mask(More)
Post-processing techniques are applied after the integration and assembly of nanostructures and Microelectromechanical Systems (MEMS) to realize integrated Nanoelectromechanical Systems (NEMS). Experimentation is focused specifically on the application of post-processing steps to a locally self-assembled micro-to-nano system comprising of suspended silicon(More)