Jong-in Hahm

Learn More
The development of electrically addressable, label-free detectors for DNA and other biological macromolecules has the potential to impact basic biological research as well as screening in medical and bioterrorism applications. Here we report two-terminal silicon nanowire electronic devices that function as ultrasensitive and selective detectors of DNA. The(More)
Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in(More)
The exploding field of biomedical research and biotechnology demands convenient and reliable solid-state methods for protein detection and underscores the importance of high-density, high-payload protein arrays assembled on two-dimensional platforms. Proteins immobilized on various polymeric surfaces are of particular importance in basic research and(More)
Fluorescence detection is currently one of the most widely used methods in the areas of basic biological research, biotechnology, cellular imaging, medical testing, and drug discovery. Using model protein and nucleic acid systems, we demonstrate that engineered nanoscale zinc oxide structures can significantly enhance the detection capability of(More)
Novel methods for immobilizing proteins on surfaces have the potential to impact basic biological research as well as various biochip applications. Here, we demonstrate a unique method to pattern proteins with a nanometer periodicity on silicon oxide substrates using microphase-separated diblock copolymer thin films. We developed a straightforward and(More)
We report in this communication the design and fabrication of solution-processed white light-emitting diodes (LEDs) containing a bilayer of heavy metal-free colloidal quantum dots (QDs) and polymer in the device active region. White electroluminescence was obtained in the LEDs by mixing the red emission of ZnCuInS/ZnS core/shell QDs and the blue-green(More)
Early detection of disease markers can provide higher diagnostic power and improve disease prognosis. We demonstrate the use of zinc oxide nanorod (ZnO NR) arrays in a straightforward, reliable, and ultrasensitive detection of the cytokines interleukin-18 and tumor necrosis factor-alpha. Specifically, we exploit the fluorescence-enhancing properties of ZnO(More)
  • Jong-in Hahm
  • Langmuir : the ACS journal of surfaces and…
  • 2014
Protein adsorption onto polymer surfaces is a very complex, ubiquitous, and integrated process, impacting essential areas of food processing and packaging, health devices, diagnostic tools, and medical products. The nature of protein-surface interactions is becoming much more complicated with continuous efforts toward miniaturization, especially for the(More)
One-dimensional zinc oxide nanomaterials have been recently developed into novel, extremely effective, optical signal-enhancing bioplatforms. Their usefulness has been demonstrated in various biomedical fluorescence assays. Fluorescence is extensively used in biology and medicine as a sensitive and noninvasive detection method for tracking and analyzing(More)
We developed a straightforward method to produce hexagonal ZnO nanorods and microrods using a novel biocatalyst, Magnetospirillum magnetotacticum. ZnO nanorods were synthesized homogeneously on growth substrates when the bacterial catalysts were deposited uniformly on substrates whereas ZnO microrods were formed when the catalysts were introduced to(More)