Jong Su Baeck

Learn More
There is no doubt that the molecular imaging is an extremely important technique in diagnosing diseases. Dual imaging is emerging as a step forward in molecular imaging technique because it can provide us with more information useful for diagnosing diseases than single imaging. Therefore, diverse dual imaging modalities should be developed. Molecular(More)
Gadolinium (Gd) is a unique and powerful element in chemistry and biomedicine which can be applied simultaneously to magnetic resonance imaging (MRI), X-ray computed tomography (CT), and neutron capture therapy for cancers. This multifunctionality can be maximized using gadolinium oxide (Gd2O3) nanoparticles (GNPs) because of the large amount of Gd per GNP,(More)
A new type of dual-mode T1 and T2 magnetic resonance imaging (MRI) contrast agent based on mixed lanthanide oxide nanoparticles was synthesized. Gd(3+) ((8)S7/2) plays an important role in T1 MRI contrast agents because of its large electron spin magnetic moment resulting from its seven unpaired 4f-electrons, and Dy(3+) ((6)H15/2) has the potential to be(More)
A facile one-pot synthesis of d-glucuronic acid-coated ultrasmall Ln(2)O(3) (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles is presented. Their water proton relaxivities were studied to address their possibility as a new potential MRI contrast agent. We focused on the d-glucuronic acid-coated ultrasmall Dy(2)O(3) nanoparticle because it showed the highest r(2)(More)
Water-soluble and biocompatible D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles were synthesized for the first time to be used as x-ray computed tomography (CT) contrast agents. Their average particle diameters were 3.2 ± 0.1 and 2.8 ± 0.1 nm for D-glucuronic acid coated Na2WO4 and BaCO3 nanoparticles, respectively. All the nanoparticles exhibited a(More)
The dependence of longitudinal (r1) and transverse (r2) water proton relaxivities of ultrasmall gadolinium oxide (Gd2O3) nanoparticles on the surface coating ligand-size was investigated. Both r1 and r2 values decreased with increasing ligand-size. We attributed this to the ligand-size effect. In addition the effectiveness of d-glucuronic acid-coated(More)
We report here paramagnetic dysprosium nanomaterial-based T(2) MRI contrast agents. A large r(2) and a negligible r(1) is an ideal condition for T(2) MR imaging. At this condition, protons are strongly and nearly exclusively induced for T(2) MR imaging. The dysprosium nanomaterials fairly satisfy this because they are found to possess a decent r(2) but a(More)
The gadolinium oxide (Gd2O3) nanoparticles are well-known potential candidates for a positive magnetic resonance imaging (MRI) contrast agent owing to their large longitudinal water proton relaxivity (r1) value with r2/r1 ratio close to one (r2 = transverse water proton relaxivity). In addition they may be used to sense metal ions because their r1 and r2(More)
The water-soluble and biocompatible D-glucuronic acid coated Eu(OH)3 nanorods (average thickness x average length = 9.0 x 118.3 nm) have been prepared in one-pot synthesis. The D-glucuronic acid coated Eu(OH)3 nanorods showed a strong fluorescence at approximately 600 nm with a narrow emission band width. A cytotoxicity test by using DU145 cells showed that(More)
  • 1