Learn More
Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell(More)
Genetically identical populations of cells grown in the same environmental condition show substantial variability in gene expression profiles. Although single-cell RNA-seq provides an opportunity to explore this phenomenon, statistical methods need to be developed to interpret the variability of gene expression counts. We develop a statistical framework for(More)
The differences between individual cells can have profound functional consequences, in both unicellular and multicellular organisms. Recently developed single-cell mRNA-sequencing methods enable unbiased, high-throughput, and high-resolution transcriptomic analysis of individual cells. This provides an additional dimension to transcriptomic information(More)
The N-terminal transit peptides of nuclear-encoded plastid proteins are necessary and sufficient for their import into plastids, but the information encoded by these transit peptides remains elusive, as they have a high sequence diversity and lack consensus sequences or common sequence motifs. Here, we investigated the sequence information contained in(More)
Single-cell RNA-sequencing (scRNA-seq) facilitates identification of new cell types and gene regulatory networks as well as dissection of the kinetics of gene expression and patterns of allele-specific expression. However, to facilitate such analyses, separating biological variability from the high level of technical noise that affects scRNA-seq protocols(More)
Single-cell RNA sequencing (scRNA-seq) has broad applications across biomedical research. One of the key challenges is to ensure that only single, live cells are included in downstream analysis, as the inclusion of compromised cells inevitably affects data interpretation. Here, we present a generic approach for processing scRNA-seq data and detecting low(More)
Methods for discriminative motif discovery in DNA sequences identify transcription factor binding sites (TFBSs), searching only for patterns that differentiate two sets (positive and negative sets) of sequences. On one hand, discriminative methods increase the sensitivity and specificity of motif discovery, compared to generative models. On the other hand,(More)
Predicting the destination of a protein in a cell is important for annotating the function of the protein. Recent advances have allowed us to develop more accurate methods for predicting the subcellular localization of proteins. One of the most important factors for improving the accuracy of these methods is related to the introduction of new useful(More)
The comprehensive identification of functional transcription factor binding sites (TFBSs) is an important step in understanding complex transcriptional regulatory networks. This study presents a motif-based comparative approach, STAT-Finder, for identifying functional DNA binding sites of STAT3 transcription factor. STAT-Finder combines STAT-Scanner, which(More)
Accurate prediction of transcription factor binding sites (TFBSs) is a prerequisite for identifying cis-regulatory modules that underlie transcriptional regulatory circuits encoded in the genome. Here, we present a computational framework for detecting TFBSs, when multiple position weight matrices (PWMs) for a transcription factor are available. Grouping(More)