Jong-Eun Won

Learn More
The development of smart biomaterials for tissue regeneration has become the focus of intense research interest. More opportunities are available by the composite approach of combining the biomaterials in the form of biopolymers and/or bioceramics either synthetic or natural. Strategies to provide smart capabilities to the composite biomaterials primarily(More)
A reliable source of osteogenic cells is an essential factor for bone tissue engineering. In this study, human-induced pluripotent stem cells (hiPSCs) without an embryoid body step were cultured in macrochanneled poly(caprolactone) (PCL) scaffolds prepared using a robotic dispensing technique, after which osteogenesis was promoted by the addition of(More)
Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an(More)
Three-dimensional (3-D) open-channeled scaffolds of biopolymers are a promising candidate matrix for tissue engineering. When scaffolds have the capacity to deliver bioactive molecules the potential for tissue regeneration should be greatly enhanced. In order to improve drug-delivery capacity, we exploit 3-D poly(lactic acid) (PLA) scaffolds by creating(More)
BACKGROUND/AIM A novel nanofibrous membrane of a degradable biopolymer poly (lactide-co-ε-caprolactone) (PLCL) for guided bone regeneration (GBR) was designed and its tissue compatibility and ability to promote the regeneration of new bone were investigated in a rat mandibular defect model. MATERIALS AND METHODS The nanofibrous structuring of the PLCL(More)
A novel bone tissue-engineering construct was developed by using poly(ɛ-caprolactone) (PCL)-macrochanneled scaffolds combined with stem cell-seeded collagen hydrogels and then applying flow perfusion culture. Rat mesenchymal stem cells (MSCs) were loaded into collagen hydrogels, which were then combined with macrochanneled PCL scaffolds. Collagen hydrogels(More)
Responses of mesenchymal stem cells (MSCs) cultured with zinc-added (2 and 5%) bioactive glass granules were evaluated in terms of cell growth and osteogenic differentiation. MSCs were cultured with different quantities (3, 10 and 30) of glass granules for up to 21 days in the osteogenic medium. Cell growth was stimulated by a small quantity of glasses,(More)
Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load(More)
Nanocomposite scaffolds with tailored 3D pore configuration are promising candidates for the reconstruction of bone. Here we fabricated novel nanocomposite bone scaffolds through robocasting. Poly(caprolactone) (PCL)-hydroxyapatite (HA) slurry containing ionically modified carbon nanotubes (imCNTs) was robotic-dispensed and structured layer-by-layer into(More)
Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein(More)