Jonathan Walz

Learn More
Positrons are used to cool antiprotons for the first time. The oppositely charged positrons and antiprotons are first simultaneously accumulated in separate Penning trap volumes, and then are spatially merged in a nested Penning trap. The antiprotons cool until they reach a low relative velocity with respect to the cold positrons, the situation expected to(More)
Traditional Beowulf clusters have been homogeneous platforms for distributed-memory MIMD parallelism. However, the shift to multicore architectures has made shared-memory MIMD parallelism increasingly important, and inexpensive manycore GPGPUs have revived SIMD parallelism. This paper presents a case study in designing and building a heterogeneous cluster(More)
Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz(More)
Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and(More)
Reproductive Futurism is the pervasive structuring of politics and society around securing of the future through fealty to a figurative Child. The primary means of the Child's proliferation is the normalizing of hetero-reproduction, which privileges heterosexuality with validity and meaning. Fracture represents a body of work that illustrates my personal(More)
One of the fundamental properties of the proton is its magnetic moment, µp. So far µp has been measured only indirectly, by analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin(More)
  • 1