Jonathan W Lowery

Learn More
Enhancing bone morphogenetic protein (BMP) signaling increases bone formation in a variety of settings that target bone repair. However, the role of BMP in the maintenance of adult bone mass is not well understood. Targeted disruption of BMP3 in mice results in increased trabecular bone formation, whereas transgenic overexpression of BMP3 in skeletal cells(More)
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven(More)
Imbalances in the ratio of bone morphogenetic protein (BMP) versus activin and TGFβ signaling are increasingly associated with human diseases yet the mechanisms mediating this relationship remain unclear. The type 2 receptors ACVR2A and ACVR2B bind BMPs and activins but the type 2 receptor BMPR2 only binds BMPs, suggesting that type 2 receptor utilization(More)
While new roles for the adult skeleton as an endocrine organ continue to emerge, our understanding of how bone homeostasis is maintained is also changing. Here we focus on BMP2, a molecule identified by its ability to induce bone formation at extraskeletal sites. We detail specific roles for BMP2 in the adult skeleton, where it acts to regulate the(More)
This study was undertaken to investigate the utility of vitamin D3-palmitate as a nutritional supplement and thus define the intestinal absorption profile of vitamin D2 and vitamin D3 liberated after its cleavage from vitamin D3-palmitate in the human infant at various postnatal ages. The subjects for study consisted of 48 normal infants that were(More)
Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with(More)
Genetic and functional studies indicate that common components of the bone morphogenetic protein (BMP) signaling pathway play critical roles in regulating vascular development in the embryo and in promoting vascular homeostasis and disease in the adult. However, discrepancies between in vitro and in vivo findings and distinct functional properties of the(More)
Patients with familial pulmonary arterial hypertension inherit heterozygous mutations of the type 2 bone morphogenetic protein (BMP) receptor BMPR2. To explore the cellular mechanisms of this disease, we evaluated the pulmonary vascular responses to chronic hypoxia in mice carrying heterozygous hypomorphic Bmpr2 mutations (Bmpr2 delta Ex2/+). These mice(More)
The bone morphogenetic protein (BMP) type 2 receptor ligand, Bmp2, is upregulated in the peripheral pulmonary vasculature during hypoxia-induced pulmonary hypertension (PH). This contrasts with the expression of Bmp4, which is expressed in respiratory epithelia throughout the lung. Unlike heterozygous null Bmp4 mice (Bmp4(LacZ/+)), which are protected from(More)
More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH). More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations). These comprise 40% of HPAH mutations and are predicted to(More)