Learn More
Quantitative structures were obtained for the fully hydrated fluid phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data for DOPC included two solvent contrasts, 50% and 100% D(2)O. For DPPC, additional contrast data were obtained with(More)
We present all-atom molecular dynamics simulations of biologically realistic transmembrane potential gradients across a DMPC bilayer. These simulations are the first to model this gradient in all-atom detail, with the field generated solely by explicit ion dynamics. Unlike traditional bilayer simulations that have one bilayer per unit cell, we simulate a(More)
Reconstruction and interpretation of lipid bilayer structure from X-ray scattering often rely on assumptions regarding the molecular distributions across the bilayer. It is usually assumed that changes in head-head spacings across the bilayer, as measured from electron density profiles, equal the variations in hydrocarbon thicknesses. One can then determine(More)
Alpha-synuclein remains a protein of interest due to its propensity to form fibrillar aggregates in neurodegenerative disease and its putative function in synaptic vesicle regulation. Herein, we present a series of atomistic molecular dynamics simulations of wild-type alpha-synuclein and three Parkinson disease familial mutants (A30P, A53T, and E46K) in two(More)
Amphipathic polymers known as “amphipols” provide a highly stabilizing environment for handling membrane proteins in aqueous solutions. A8-35, an amphipol with a polyacrylate backbone and hydrophobic grafts, has been extensively characterized and widely employed for structural and functional studies of membrane proteins using biochemical and biophysical(More)
High-resolution small-angle X-ray scattering (SAXS), complemented by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments, was used to study the effect of curvature on the bilayer structure of dioleoyl-phosphatidylcholine (DOPC) and dioleoyl-phosphatidylserine (DOPS) unilamellar vesicles (ULVs). Bilayer curvature, as a result(More)
Using a combination of X-ray scattering, fluorescence correlation spectroscopy, coarse-grained molecular dynamics (MD) simulations and potential of mean force calculations, we have explored the membrane remodeling effects of monomeric α-synuclein (αS). Our initial findings from multiple approaches are that αS (1) causes a significant thinning of the bilayer(More)
In our review, we introduce an organizational scheme for membrane protein function. It is the relationship between structure, dynamics, and environment that endows the membrane and its constituents with remarkable sensitivity and robustness. Our understanding begins with landmark advances like those presented in the following chapters. Membrane proteins are(More)
We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40(More)
Membrane protein structure and function are influenced by the interaction with the lipid bilayer environment. The lipid bilayer structure and dynamics are in turn perturbed by the protein insertion. To study this mechanism, a number of experimental studies have used a series of model peptides (WALP) which consist of sequences of alternating alanine and(More)