Jonathan Sachs

Learn More
Quantitative structures were obtained for the fully hydrated fluid phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data for DOPC included two solvent contrasts, 50% and 100% D(2)O. For DPPC, additional contrast data were obtained with(More)
The Hsp-organizing protein (HOP) binds to the C termini of the chaperones Hsp70 and Hsp90, thus bringing them together so that substrate proteins can be passed from Hsp70 to Hsp90. Because Hsp90 is essential for the correct folding and maturation of many oncogenic proteins, it has become a significant target for anti-cancer drug design. HOP binds to Hsp70(More)
OBJECTIVE Somatostatin receptor scintigraphy (SRS) of neuroendocrine (NE) tumours is often challenging because of minute lesion size and poor anatomic delineation. This study evaluates the impact of sequentially performed single-photon emission computed tomography (SPECT)/CT fusion on SRS study interpretation and clinical management of these tumours. (More)
Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep integral membrane proteins (MPs) water soluble. In this review, we discuss their structure and solution behavior; the way they associate with MPs; and the structure, dynamics, and solution properties of the resulting complexes. All MPs tested to date form(More)
Imaging is of major clinical importance in the noninvasive evaluation and management of patients with cancer. Computed tomography (CT) and other anatomic imaging modalities, such as magnetic resonance imaging (MRI) or ultrasound, have a high diagnostic ability by visualizing lesion morphology and by providing the exact localization of malignant sites.(More)
We present all-atom molecular dynamics simulations of biologically realistic transmembrane potential gradients across a DMPC bilayer. These simulations are the first to model this gradient in all-atom detail, with the field generated solely by explicit ion dynamics. Unlike traditional bilayer simulations that have one bilayer per unit cell, we simulate a(More)
Alpha-synuclein remains a protein of interest due to its propensity to form fibrillar aggregates in neurodegenerative disease and its putative function in synaptic vesicle regulation. Herein, we present a series of atomistic molecular dynamics simulations of wild-type alpha-synuclein and three Parkinson disease familial mutants (A30P, A53T, and E46K) in two(More)
Using a combination of X-ray scattering, fluorescence correlation spectroscopy, coarse-grained molecular dynamics (MD) simulations and potential of mean force calculations, we have explored the membrane remodeling effects of monomeric α-synuclein (αS). Our initial findings from multiple approaches are that αS (1) causes a significant thinning of the bilayer(More)
We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40(More)
The association between monovalent salts and neutral lipid bilayers is known to influence global bilayer structural properties such as headgroup conformational fluctuations and the dipole potential. The local influence of the ions, however, has been unknown due to limited structural resolution of experimental methods. Molecular dynamics simulations are used(More)