Learn More
BACKGROUND Many Caenorhabditis elegans mutations increase longevity and much evidence suggests that they do so at least partly via changes in metabolism. However, up until now there has been no systematic investigation of how the metabolic networks of long-lived mutants differ from those of normal worms. Metabolomic technologies, that permit the analysis of(More)
Most investigations of the forces shaping protein evolution have focused on protein function. However, cells are typically 50%-75% protein by dry weight, with protein expression levels distributed over five orders of magnitude. Cells may, therefore, be under considerable selection pressure to incorporate amino acids that are cheap to synthesize into(More)
BACKGROUND Present protein interaction network data sets include only interactions among subsets of the proteins in an organism. Previously this has been ignored, but in principle any global network analysis that only looks at partial data may be biased. Here we demonstrate the need to consider network sampling properties explicitly and from the outset in(More)
The nematode Caenorhabditis elegans grows largely by increases in cell size. As a consequence of this, the surface: volume ratio of its cells must decline in the course of postembryonic growth. Here we use transcriptomic and metabolomic data to show that this change in geometry can explain a variety of phenomena during growth, including: (i) changes in the(More)
Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they(More)
BACKGROUND Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence. RESULTS(More)
The Saccharomycetales or 'true yeasts' consist of more than 800 described species, including many of scientific, medical and commercial importance. Considerable progress has been made in determining the phylogenetic relationships of these species, largely based on rDNA sequences, but many nodes for early-diverging lineages cannot be resolved with rDNA(More)
  • 1