Jonathan Platkiewicz

Learn More
In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation,(More)
Neurons spike when their membrane potential exceeds a threshold value. In central neurons, the spike threshold is not constant but depends on the stimulation. Thus, input-output properties of neurons depend both on the effect of presynaptic spikes on the membrane potential and on the dynamics of the spike threshold. Among the possible mechanisms that may(More)
Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer(More)
Computational modeling is increasingly used to understand the function of neural circuits in systems neuroscience. These studies require models of individual neurons with realistic input-output properties. Recently, it was found that spiking models can accurately predict the precisely timed spike trains produced by cortical neurons in response to(More)
Two objects of similar visual aspects and of equal mass, but of different sizes, generally do not elicit the same percept of heaviness in humans. The larger object is consistently felt to be lighter than the smaller, an effect known as the "size-weight illusion." When asked to repeatedly lift the two objects, the grip forces were observed to adapt rapidly(More)
Recent in vivo experiments have revealed that the action potential threshold depends on the rate of depolarization just preceding the spike. This phenomenon can be reproduced in the Hodgkin-Huxley model. We analyzed spike initiation in the (V, h) phase space, where h is the sodium inactivation variable, and found that the dynamical system exhibits a saddle(More)
Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are(More)
Motivated by the observation of millisecond-timescale synchrony among hippocampal neurons in high-density extracellular recordings of freely moving rats [1], we developed and applied a model for detecting synchrony under such conditions. We calibrated the model using data of a putative monosynaptic connection, obtained in paired extracellular-intracellular(More)
The perception of haptic textures depends on the mechanical interaction between a surface and a biological sensor. A texture is apprehended by sliding one's fingers over the surface of an object. We describe here an apparatus that makes it possible to record the mechanical fluctuations arising from the friction between a human fingertip and easily(More)
Two objects of similar visual aspects and of equal mass, but of different sizes, generally do not elicit the same percept of heaviness in humans. The larger object is consistently felt to be lighter than the smaller, an effect known as the 'size-weight illusion'. We investigated whether the same effect can be observed if the mass of an object is available(More)