Learn More
1. Using an in vitro slice preparation of the rat dorsal lateral geniculate nucleus (dLGN), the properties of retinogeniculate and corticothalamic inputs to thalamocortical (TC) neurones were examined in the absence of GABAergic inhibition. 2. The retinogeniculate EPSP evoked at low frequency (>= 0.1 Hz) consisted of one or two fast-rising (0.8 +/- 0.1 ms),(More)
1. Intracellular sharp electrode current clamp and discontinuous single electrode voltage clamp recordings were made from thalamocortical neurones (n = 57) of the cat ventrobasal thalamus in order to investigate the mechanism underlying anomalous rectification. 2. Under current clamp conditions, voltage-current (V-I) relationships in a potential range of(More)
1. Intracellular recordings were made from putative interneurones (n = 24) and thalamocortical (TC) projection neurones (n = 45) in slice preparations of the rat dorsal lateral geniculate nucleus (dLGN) in order to compare the electrophysiological properties of these neuronal types. 2. Intracellular injection of biocytin to electrophysiologically identified(More)
Our previous work has shown that Group I mGlu receptors participate in thalamic sensory processing in vivo. However, unequivocal demonstration of mGlu5 participation has not been possible due to the lack of specific ligands. We have therefore made a preliminary study of the in vivo actions of the agonist (R,S)-2-Chloro-5-hydroxyphenylglycine [CHPG] and the(More)
1. Corticothalamic (CT) EPSPs evoked at <= 0.1 Hz were recorded from thalamocortical neurones in the rat dorsal lateral geniculate nucleus in vitro, with both GABAA and GABAB receptors blocked. 2. The group III metabotropic glutamate (mGlu) receptor agonists L-2-amino-4-phosphono-butyric acid (L-AP4) and O-phospho-L-serine (L-SOP) both caused a(More)
1. The morphological (n = 66) and electrophysiological (n = 41) properties of eighty-six thalamocortical (TC) neurones and those of one interneurone in the cat ventrobasal (VB) thalamus were examined using an in vitro slice preparation. The resting membrane potential for thirty-seven TC neurones was -61.9 +/- 0.7 mV, with thirteen neurones exhibiting delta(More)
The N-methyl-D-aspartate (NMDA)-preferring glutamate receptor subtype possesses, in addition to the recognition site for glutamate, a binding site for glycine. We report here on the pharmacological properties of 3-(4,6-dichloro-2-carboxyindol-3-yl)-propionic acid (MDL 29,951) and 4-carboxymethylamino-5,7-dichloroquinoline-2-carboxylic acid (MDL 100,748),(More)
The action of ethosuximide (ETX) on Na+, K+, and Ca2+ currents and on tonic and burst-firing patterns was investigated in rat and cat thalamic neurons in vitro by using patch and sharp microelectrode recordings. In thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (LGN), ETX (0.75-1 mM) decreased the noninactivating Na+ current,(More)
1. The mechanism underlying a novel form of input signal amplification and bistability was investigated by intracellular recording in rat and cat thalamocortical (TC) neurones maintained in slices and by computer simulation with a biophysical model of these neurones. 2. In a narrow membrane potential range centred around -60 mV, TC neurones challenged with(More)
Intracellular recordings were made from thalamocortical neurons in slices of rat dorsal lateral geniculate nucleus in vitro, where ionotropic glutamate receptors and ionotropic and metabotropic GABA receptors had been blocked. The activation of specific metabotropic glutamate receptors by exogenous agonists and by the electrical stimulation of the(More)