Learn More
Prolonged Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels is crucial in activating the Ca(2+)-sensitive transcription factor NFAT, which is responsible for directing T cell proliferation and cytokine gene expression. To establish whether targeting CRAC might counteract intestinal inflammation, we evaluated the in vitro effect of a(More)
Low-frequency stimulation (LFS) is used to induce long-term depression (LTD) and depotentiation at rodent CA3-CA1 hippocampal synapses. The relationship between the efficacy of LFS induction and postnatal age remains to be clearly defined in rat and had not been studied in mouse. The data presented here show that in acute mouse hippocampal slices(More)
The induction of long-term potentiation (LTP) at corticostriatal synapses is dependent on the activation of postsynaptic NMDA receptors, but the mechanisms involved in the maintenance of LTP are not known. We report here that forskolin, an activator of adenylyl cyclase, induces a lasting enhancement of the corticostriatal synaptic response. This enhancement(More)
One of the major neuropathological hallmarks in Alzheimer's disease (AD) is the loss of cholinergic neurones of the nucleus basalis of Meynert (NbM). This consistent finding gave rise to the 'cholinergic' hypothesis of AD and lead to the subsequent development of acetylcholinesterase (AChE) inhibitors; the first class of drug to be approved for the(More)
5-HT(4) receptors are widely distributed in both peripheral and central nervous systems where they couple, via a G-protein, to the activation of adenylate cyclase. In the brain, the highest 5-HT(4) receptor densities are found in the limbic system, including the hippocampus and frontal cortex. It has been suggested that activation of these receptors may be(More)
A potentially major factor in the development of Alzheimer's disease is the enhanced production of soluble beta-amyloid peptide fragments amyloid beta peptide(1-40) and amyloid beta peptide(1-42). These amyloid peptides are generated by cleavage of the amyloid-precursor protein and aggregate spontaneously to form amyloid plaques, which are a classical(More)
Studies in heterologous systems have demonstrated that heterodimerisation of the two GABA(B) receptor subunits appears to be crucial for the trafficking and signalling of the receptor. Gene targeting of the GABA(B1) gene has demonstrated that the expression of GABA(B1) is essential for GABA(B) receptor function in the central nervous system (CNS). However,(More)
  • 1