Jonathan P. Spencer

Learn More
Long-term changes in the synaptic efficacy of corticostriatal synapses are believed to be important for regulating the excitatory input to the basal ganglia, and hence for motor learning and certain forms of cognition. Previous reports have suggested that long-term depression (LTD) is the predominant form of plasticity at corticostriatal synapses. However,(More)
Low-frequency stimulation (LFS) is used to induce long-term depression (LTD) and depotentiation at rodent CA3-CA1 hippocampal synapses. The relationship between the efficacy of LFS induction and postnatal age remains to be clearly defined in rat and had not been studied in mouse. The data presented here show that in acute mouse hippocampal slices(More)
Prolonged Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels is crucial in activating the Ca(2+)-sensitive transcription factor NFAT, which is responsible for directing T cell proliferation and cytokine gene expression. To establish whether targeting CRAC might counteract intestinal inflammation, we evaluated the in vitro effect of a(More)
The induction of long-term potentiation (LTP) at corticostriatal synapses is dependent on the activation of postsynaptic NMDA receptors, but the mechanisms involved in the maintenance of LTP are not known. We report here that forskolin, an activator of adenylyl cyclase, induces a lasting enhancement of the corticostriatal synaptic response. This enhancement(More)
Studies in heterologous systems have demonstrated that heterodimerisation of the two GABA(B) receptor subunits appears to be crucial for the trafficking and signalling of the receptor. Gene targeting of the GABA(B1) gene has demonstrated that the expression of GABA(B1) is essential for GABA(B) receptor function in the central nervous system (CNS). However,(More)
  • 1