Jonathan P. Heritage

Learn More
We introduce a dynamic optical arbitrary waveform generation (OAWG) technique that produces bandwidth scalable, continuous waveforms of near perfect fidelity. Additionally, OAWG's complement, real-time arbitrary optical waveform measurement (OAWM) is discussed. These approaches utilize gigahertz-bandwidth electronics to generate, or measure, truly arbitrary(More)
We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two(More)
We demonstrate a high-performance optical arbitrary waveform shaper based on a single 10 GHz arrayed-waveguide grating with 64 loopback waveguides and integrated amplitude and phase modulators on each waveguide. The design is compact and self-aligning and allows for bidirectional operation. The device's complex transfer function is manipulated and measured(More)
A stable optical frequency comb with 20-GHz spacing is shaped by a compact integrated silica arrayed waveguide grating (AWG) pair to produce optical waveforms with unprecedented fidelity. Complete characterization of both the intensity and phase of the crafted optical fields is accomplished with cross-correlation frequency resolved optical gating (XFROG)(More)
This paper presents the concept of an optical transmitter based on optical arbitrary waveform generation (OAWG) capable of synthesizing Tb/s optical signals of arbitrary modulation format. Experimental and theoretical demonstrations in this paper include generation of data packet waveforms focusing on (a) achieving high spectral efficiencies in quadrature(More)
We demonstrate, for the first time, an error-free, 320-Gb/s optical code division multiple access (O-CDMA) network testbed employing the spectral phase encoded time spreading (SPECTS) technique. Results with and without forward error correction (FEC) are presented. © 2006 Optical Society of America OCIS codes: (060.2330) Fiber optics communications;(More)
We demonstrate monolithic integration of a 100-channel arrayed-waveguide grating (AWG) with 10-GHz channel spacing and 100 optically controlled Michelsoninterferometer-based phase and amplitude modulators. The high-resolution AWG showed better than 15-dB crosstalk, and the modulator extinction ratio was better than 20 dB with either electrical or optical(More)