Learn More
Attention is thought to play a key role in the computation of stimulus values at the time of choice, which suggests that attention manipulations could be used to improve decision-making in domains where self-control lapses are pervasive. We used an fMRI food choice task with non-dieting human subjects to investigate whether exogenous cues that direct(More)
Suppose a learner is faced with a domain of problems about which it knows nearly nothing. It does not know the distribution of problems, the space of solutions is not smooth, and the reward signal is uninformative, providing perhaps a few bits of information but not enough to steer the learner effectively. How can such a learner ever get off the ground? A(More)
An important open problem is how values are compared to make simple choices. A natural hypothesis is that the brain carries out the computations associated with the value comparisons in a manner consistent with the Drift Diffusion Model (DDM), since this model has been able to account for a large amount of data in other domains. We investigated the ability(More)
We present a novel method for aligning a sequence of instructions to a video of someone carrying out a task. In particular, we focus on the cooking domain, where the instructions correspond to the recipe. Our technique relies on an HMM to align the recipe steps to the (automatically generated) speech transcript. We then refine this alignment using a(More)
The Dirichlet process (DP) is a fundamental mathematical tool for Bayesian nonparametric modeling, and is widely used in tasks such as density estimation, natural language processing, and time series modeling. Although MCMC inference methods for the DP often provide a gold standard in terms asymptotic accuracy, they can be computationally expensive and are(More)
The question for the symposium is how best to understand biases in decision-making, going beyond traditional judgment and decision-making (JDM) accounts such as prospect theory to take a more modern reverse-engineering perspective bridging rational computational, algorithmic, and neural levels of explanation, and viewing decision-making under risk and(More)
  • 1