Jonathan M. Page

Learn More
Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation.(More)
Parathyroid hormone-related protein (PTHrP) is an important regulator of bone destruction in bone metastatic tumors. Transforming growth factor-beta (TGF-β) stimulates PTHrP production in part through the transcription factor Gli2, which is regulated independent of the Hedgehog signaling pathway in osteolytic cancer cells. However, inhibition of TGF-β in(More)
A combination of anionic and RAFT polymerization was used to synthesize an ABC triblock polymer poly[(propylenesulfide)-block-(N,N-dimethylacrylamide)-block-(N-isopropylacrylamide)] (PPS-b-PDMA-b-PNIPAAM) that forms physically cross-linked hydrogels when transitioned from ambient to physiologic temperature and that incorporates mechanisms for reactive(More)
Circulating monocytes undergo spontaneous apoptosis when there is no activation stimulus, which is critical to population control for proper host response to implants. As activation and apoptosis of monocytes/macrophages are regulated by cell-cell and cell-matrix interactions, their regulatory mechanism was investigated in this study using polyethylene(More)
Scaffolds with tunable mechanical and topological properties fabricated by templated-fused deposition modeling promote increased osteogenic differentiation of bone marrow stem cells with increasing substrate modulus and decreasing pore size. These findings guide the rational design of cell-responsive scaffolds that recapitulate the bone microenvironment for(More)
Cancer patients frequently develop skeletal metastases that significantly impact quality of life. Since bone metastases remain incurable, a clearer understanding of molecular mechanisms regulating skeletal metastases is required to develop new therapeutics that block establishment of tumors in bone. While many studies have suggested that the(More)
Invasion by cancer cells through the extracellular matrix (ECM) of tissues is a critical step in cancer progression and metastasis. Actin-rich subcellular protrusions known as invadopodia are thought to facilitate this process by localizing proteinases which degrade the ECM and allow for cancer cell penetration. We have shown in vitro that invadopodia(More)
The contents of this data in brief are related to the article titled "Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II". In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in(More)
Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other(More)