Jonathan M. Levine

Learn More
In a California riparian system, the most diverse natural assemblages are the most invaded by exotic plants. A direct in situ manipulation of local diversity and a seed addition experiment showed that these patterns emerge despite the intrinsic negative effects of diversity on invasions. The results suggest that species loss at small scales may reduce(More)
Although the impacts of exotic plant invasions on community structure and ecosystem processes are well appreciated, the pathways or mechanisms that underlie these impacts are poorly understood. Better exploration of these processes is essential to understanding why exotic plants impact only certain systems, and why only some invaders have large impacts.(More)
Though many processes are involved in determining which species coexist and assemble into communities, competition is among the best studied. One hypothesis about competition's contribution to community assembly is that more closely related species are less likely to coexist. Though empirical evidence for this hypothesis is mixed, it remains a common(More)
Natural populations consist of phenotypically diverse individuals that exhibit variation in their demographic parameters and intra- and inter-specific interactions. Recent experimental work indicates that such variation can have significant ecological effects. However, ecological models typically disregard this variation and focus instead on trait means and(More)
How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a(More)
Ecological communities characteristically contain a wide diversity of species with important functional, economic and aesthetic value. Ecologists have long questioned how this diversity is maintained. Classic theory shows that stable coexistence requires competitors to differ in their niches; this has motivated numerous investigations of ecological(More)
Nonhierarchical competition between species has been proposed as a potential mechanism for biodiversity maintenance, but theoretical and empirical research has thus far concentrated on systems composed of relatively few species. Here we develop a theory of biodiversity based on a network representation of competition for systems with large numbers of(More)