Jonathan K Wassei

Learn More
Graphene's single atomic layer of sp(2) carbon has recently garnered much attention for its potential use in electronic applications. Here, we report a memory application for graphene, which we call graphene flash memory (GFM). GFM has the potential to exceed the performance of current flash memory technology by utilizing the intrinsic properties of(More)
We report the formation of a nanocomposite comprised of chemically converted graphene and carbon nanotubes. Our solution-based method does not require surfactants, thus preserving the intrinsic electronic and mechanical properties of both components, delivering 240 ohms/square at 86% transmittance. This low-temperature process is completely compatible with(More)
The atomic structure of graphene on polycrystalline copper substrates has been studied using scanning tunneling microscopy. The graphene overlayer maintains a continuous pristine atomic structure over atomically flat planes, monatomic steps, edges, and vertices of the copper surface. We find that facets of different identities are overgrown with graphene's(More)
Since the first reported isolation of graphene by peeling graphite with cellophane tape in 2004, there has been a paradigm shift in research. In just nine years, graphene has had a major impact on fields ranging from physics and chemistry to materials science and engineering leading to a host of interdisciplinary advances in nanotechnology. Graphene is(More)
To study the effects of hydrocarbon precursor gases, graphene is grown by chemical vapor deposition from methane, ethane, and propane on copper foils. The larger molecules are found to more readily produce bilayer and multilayer graphene, due to a higher carbon concentration and different decomposition processes. Single- and bilayer graphene can be grown(More)
  • 1