Jonathan K. Vincent

Learn More
Photosynthetic reaction centers convert the energy content of light into a transmembrane potential difference and so provide the major pathway for energy input into the biosphere. We applied time-resolved Laue diffraction to study light-induced conformational changes in the photosynthetic reaction center complex of Blastochloris viridis. The side chain of(More)
Of 100 arteriographically examined, hospitalized, male patients, those without myocardial infarctions were divided into the following categories: zero-, one-, two-, and three-vessel disease; patients diagnosed with myocardial infarction were classified separately. The fasting plasma samples from these patients were examined for concentrations of(More)
Ultrafast time-resolved wide angle x-ray scattering from chemical reactions in solution has recently emerged as a powerful technique for determining the structural dynamics of transient photochemical species. Here we examine the structural evolution of photoexcited CH(2)I(2) in the nonpolar solvent cyclohexane and draw comparisons with a similar study in(More)
Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum(More)
Pulsed field gradient NMR (PFG-NMR) diffusion experiments were used to investigate the binding of leucine and methionine enkephalin peptides to anionic sodium dodecyl sulfate (SDS) micelles. The study was undertaken to investigate the mechanism of interaction between enkephalin peptides and SDS micelles and to determine if NMR-derived association constants,(More)
Liquid phase time-resolved x-ray diffraction with 100 ps resolution has recently emerged as a powerful technique for probing the structural dynamics of transient photochemical species in solution. It is intrinsic to the method, however, that a structural signal is observed not only from the photochemical of interest but also from the embedding solvent(More)
Time-resolved X-ray scattering has emerged as a powerful technique for studying the rapid structural dynamics of small molecules in solution. Membrane-protein-catalyzed transport processes frequently couple large-scale conformational changes of the transporter with local structural changes perturbing the uptake and release of the transported substrate.(More)
The applicability of the Born-Oppenheimer approximation to molecule-metal surface reactions is presently a topic of intense debate. We have performed classical trajectory calculations on a prototype activated dissociation reaction, of N2 on Ru(0001), using a potential energy surface based on density functional theory. The computed reaction probabilities are(More)
We have studied the dissociative chemisorption and scattering of N(2) on and from Ru(0001), using a six-dimensional quasiclassical trajectory method. The potential energy surface, which depends on all the molecular degrees of freedom, has been built applying a modified Shepard interpolation method to a data set of results from density functional theory,(More)
To determine if hepatic venous pressure gradient (HVPG) correlates with advanced hepatic fibrosis, as a complement to transjugular (transvenous) core needle liver biopsy. After institutional review board approval, a retrospective review was conducted on 340 patients who underwent transjugular (transvenous) core needle liver biopsy with concurrent pressure(More)