Jonathan K. George

  • Citations Per Year
Learn More
A vaccinia virus-lysed autochthonous tumor cell vaccine (vaccinia oncolysate) is introduced as a new specific, active immunotherapeutic agent against human cancer. Mouse experiments showed the vaccine to be a safe and potent immune mechanism stimulator. Human experimentation was undertaken in the knowledge of relative safety of the components of the(More)
3D printing has shown promise for neural regeneration by providing customized nerve scaffolds to structurally support and bridge the defect gap as well as deliver cells or various bioactive substances. Low-level light therapy (LLLT) exhibits positive effects on rehabiliation of degenerative nerves and neural disorders. With this in mind, we postulate that(More)
Spatial division multiplexing utilizes the directionality of the light's propagating k-vector to separate it into distinct spatial directions. Here, we show that the anisotropy of orthogonal spatial solitons propagating in a single graphene monolayer results in phase-based multiplexing. We use the self-confinement properties of spatial solitons to increase(More)
Tyrosine kinase inhibitors are effective treatments for cancers. Knowing the specific kinase mutants that drive the underlying cancers predict therapeutic response to these inhibitors. Thus, the current protocol for personalized cancer therapy involves genotyping tumors in search of various driver mutations and subsequently individualizing the tyrosine(More)
The ability to rapidly identify symmetry and antisymmetry is an essential attribute of intelligence. Symmetry perception is a central process in human vision and may be key to human 3D visualization. While previous work in understanding neuron symmetry perception has concentrated on the neuron as an integrator, here we show how the coincidence detecting(More)
Convolutional neural networks have become an essential element of spatial deep learning systems. In the prevailing architecture, the convolution operation is performed with Fast Fourier Transforms (FFT) electronically in GPUs. The parallelism of GPUs provides an efficiency over CPUs, however both approaches being electronic are bound by the speed and power(More)
  • 1