Learn More
In salt-sensitive hypertension, the accumulation of Na(+) in tissue has been presumed to be accompanied by a commensurate retention of water to maintain the isotonicity of body fluids. We show here that a high-salt diet (HSD) in rats leads to interstitial hypertonic Na(+) accumulation in skin, resulting in increased density and hyperplasia of the(More)
The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which(More)
Dendritic cells (DC) play a key role in linking innate and adaptive immunity. In inflamed tissues, where DC become activated, oxygen tensions are usually low. Although hypoxia is increasingly recognized as an important determinant of cellular functions, the consequences of hypoxia and the role of one of the key players in hypoxic gene regulation, the(More)
Recognition of microbial danger signals by toll-like receptors (TLR) causes re-programming of macrophages. To investigate kinase cascades triggered by the TLR4 ligand lipopolysaccharide (LPS) on systems level, we performed a global, quantitative and kinetic analysis of the phosphoproteome of primary macrophages using stable isotope labelling with amino(More)
HIF1A is a transcription factor that plays a central role for the adaptation to tissue hypoxia and for the inflammatory response of myeloid cells, including DCs. HIF1A is stabilized by hypoxia but also by TLR ligands under normoxic conditions. The underlying signaling events leading to the accumulation of HIF1A in the presence of oxygen are still poorly(More)
Both hypoxic and inflammatory conditions activate transcription factors such as hypoxia-inducible factor (HIF)-1α and nuclear factor (NF)-κB, which play a crucial role in adaptive responses to these challenges. In dendritic cells (DC), lipopolysaccharide (LPS)-induced HIF1α accumulation requires NF-κB signaling and promotes inflammatory DC function. The(More)
High dietary salt intake is associated with hypertension; the prevalence of salt-sensitive hypertension increases with age. We hypothesized that tissue Na(+) might accumulate in hypertensive patients and that aging might be accompanied by Na(+) deposition in tissue. We implemented (23)Na magnetic resonance imaging to measure Na(+) content of soft tissues in(More)
Besides their role in immune system host defense, there is growing evidence that macrophages may also be important regulators of salt homeostasis and blood pressure by a TonEBP-VEGF-C dependent buffering mechanism. As macrophages are known to accumulate in the skin of rats fed under high salt diet conditions and are pivotal for removal of high salt storage,(More)
Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na(+) concentrations is unknown. We found that Na(+) accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the(More)