Learn More
Wireless systems require increasingly large system bandwidths that are only available at millimeter-wave frequencies. Such spectrum bands offer the potential for multi-gigabit-per-second data rates to low-cost massively broadband® devices. To enable mobile outdoor millimeter-wave cellular-type applications, it is necessary to determine the coverage(More)
— The advent of inexpensive millimeter wave devices and steerable antennas will lead to future cellular networks that use carrier frequencies at 28 GHz, 38 GHz, 60 GHz, and above. At these frequencies, the available RF bandwidth is much greater than that of current 4G systems, and high gain millimeter wave steerable antennas can be made in much smaller form(More)
PURPOSE To develop and evaluate motion-compensation and compressed-sensing techniques in 4D flow MRI for anatomical assessment in a comprehensive ferumoxytol-enhanced congenital heart disease (CHD) exam. MATERIALS AND METHODS A Cartesian 4D flow sequence was developed to enable intrinsic navigation and two variable-density sampling schemes: VDPoisson and(More)
Massively broadband® RF channel sounding is severely constrained by the sampling rates required for analog to digital conversion. Analog compressed sensing (CS) techniques based on Xampling have demonstrated the ability to lower sampling rates far below the Nyquist rate. Here, we show attributes of the multipath channel sounding problem appear to be(More)
The Berkeley Advanced Reconstruction Toolbox Jonathan I Tamir, Frank Ong, Joseph Y Cheng, Martin Uecker, and Michael Lustig Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States, Department of Radiology, Stanford University, Stanford, United States Diagnostic and Interventional Radiology, University(More)
PURPOSE A new acquisition and reconstruction method called T2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T2 Shuffling reduces blurring and recovers many images at multiple T2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). THEORY AND METHODS The parallel imaging forward model(More)
PURPOSE To develop and clinically evaluate a pediatric knee magnetic resonance imaging (MRI) technique based on volumetric fast spin-echo (3DFSE) and compare its diagnostic performance, image quality, and imaging time to that of a conventional 2D protocol. MATERIALS AND METHODS A 3DFSE sequence was modified and combined with a compressed sensing-based(More)
In this paper we explore the utility of compressive sensing for object signature generation in the optical domain. In the data acquisition stage we use laser scanning to obtain a small (sub-Nyquist) number of points of an object’s boundary. This is used to construct the signature, thereby enabling object identification, reconstruction, and, image data(More)