Jonathan Gagnon

Learn More
Minimum-Latency Aggregation Scheduling (MLAS) is a problem of fundamental importance in wireless sensor networks. There however has been very little effort spent on designing algorithms to achieve sufficiently fast data aggregation under the physical interference model which is a more realistic model than traditional protocol interference model. In(More)
N-Phthaloylchitosan represents a key intermediate for the regioselective modification of chitosan in organic media. Chemoselective protection of primary alcohols on N-phthaloylchitosan was achieved with tert-butyldimethylsilyl (TBDMS) and tert-butyldiphenylsilyl (TBDPS) groups in imidazole/DMF and DMAP/pyridine. Influence of experimental conditions such as(More)
An important application for sensor networks is to collect data sensed from the environment and send it to a data collection point or a sink node using a convergecast tree. Considerable savings in energy can be obtained by aggregating data at intermediate nodes along the way to the sink. We study the problem of finding a minimum latency aggregation tree and(More)
This paper introduces a novel workflow to generate snow imprints, and model the interaction of snow with dynamic objects. We decoupled snow simulation into three components: a base layer, snow particles, and snow mist. The base layer consists of snow that has not been in contact with a dynamic object yet, and is stored as a level set. Snow particles model(More)
We present a new approach for texturing fluids. Particle trackers are scattered on the surface of the fluid, and used to track deformations and topological changes. For every frame of the animation, the trackers are advected and rotated coherently with the flow of the fluid. Receiver polygons are identified on the fluid surface and are used to transfer uv(More)
BACKGROUND Nanomaterials are widely used in industry for their specific properties. Silver nanoparticles (Ag NPs) are largely used in several consumer products notably for their antibacterial properties and will likely be found in wastewater, then in the receiving environment. The development of a product capable to sequestrate those released contaminants(More)
BACKGROUND Engineered nanoparticles have unique properties compared to bulk materials and their commercial uses growing rapidly. They represent a potential risk for environment and health and could be eventually released in water. Silver nanoparticles (Ag NP) are applied in various products and are well-known for their antibacterial properties. Nowadays,(More)
The objective of this work is to develop a quick and simple method for the in situ monitoring of sugars in biological cultures. A new technology based on Attenuated Total Reflectance-Fourier Transform Infrared (FT-IR/ATR) spectroscopy in combination with an external light guiding fiber probe was tested, first to build predictive models from solutions of(More)
A simple and efficient pivaloylation of primary alcohols was realized on N-phthaloylchitosan that was regioselectively and entirely protected. The selectivity of this mild esterification was demonstrated by comparison with (1)H NMR chemical shifts of H-1 and H-3 of complete 3,6-O-dipivaloylated derivatives. The selective hydrazinolysis of N-phthaloyl groups(More)