Jonathan G. Terry

Learn More
A method for label-free, electrochemical impedance immunosensing for the detection and quantification of three infection biomarkers in both buffer and directly in the defined model matrix of mock wound fluid is demonstrated. Triggering Receptor-1 Expressed on Myeloid cells (TREM-1) and Matrix MetalloPeptidase 9 (MMP-9) are detected via direct assay and(More)
Quantum dot (QD) labeling combined with fluorescence lifetime imaging microscopy is proposed as a powerful transduction technique for the detection of DNA hybridization events. Fluorescence lifetime analysis of DNA microarray spots of hybridized QD labeled target indicated a characteristic lifetime value of 18.8 ns, compared to 13.3 ns obtained for spots of(More)
This paper reviews the work carried out in the field of reconfigurable antennas, and in specific the reconfigurable MEMS (Micro-Electro-Mechanical Systems) antennas. The application of MEMS to antennas is studied and compared with the various implementations such as pattern reconfigurable MEMS antennas, mechanically actuated MEMS antennas, capacitive MEMS(More)
Using electrochemical impedance spectroscopy (EIS) the sensitive and specific detection of the antibiotic resistance gene mecA has been demonstrated. The gene sequence was obtained from clinical Staphylococcus aureus isolates. Initially a mecA specific probe was selected from hybridisation tests with a 3' and 5' version of a previously published probe(More)
The performance of two electrode architectures with broadly similar overall active electrode areas are examined. The first is an electrode comprising a single contiguous area (a disc) and the second is an electrode in which the cumulative electrode area is dispersed over a wide area as a 50 nm thickness platinum nanoband. A direct comparison of the(More)
Machine learning and statistical model based classifiers have increasingly been used with more complex and high dimensional biological data obtained from high-throughput technologies. Understanding the impact of various factors associated with large and complex microarray datasets on the predictive performance of classifiers is computationally intensive,(More)
This work reports how the use of a standard integrated circuit (IC) fabrication process can improve the potential of silicon nitride layers as substrates for microarray technology. It has been shown that chemical mechanical polishing (CMP) substantially improves the fluorescent intensity of positive control gene and test gene microarray spots on both(More)
We present a new type of DNA switch, based on the Holliday junction, that uses a combination of binding and conformational switching to enable specific label-free detection of DNA and RNA. We show that a single RNA oligonucleotide species can be detected in a complex mixture of extracted cellular RNA and demonstrate that by exploiting different aspects of(More)
Hepatitis C virus (HCV) is a major cause of chronic liver disease and liver cancer, and remains a large health care burden to the world. In this study we developed a DNA microarray test to detect HCV RNA and a protein microarray to detect human anti-HCV antibodies on a single platform. A main focus of this study was to evaluate possibilities to reduce the(More)
DNA microarrays are powerful tools for gene expression analysis and genotyping studies in research and diagnostic applications. A high sensitivity and short time-to-result are prerequisites for their practical application in the clinic. The hybridization efficiency of DNA microarrays depends on the probe density and the probe orientation and thus their(More)