Learn More
Synaptic interactions between telencephalic neurons innervating descending motor or basal ganglia pathways are essential in the learning, planning, and execution of complex movements. Synaptic interactions within the songbird telencephalic nucleus HVC are implicated in motor and auditory activity associated with learned vocalizations. HVC contains(More)
Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons(More)
Songbirds learn to sing by memorizing a tutor song that they then vocally mimic using auditory feedback. This developmental sequence suggests that brain areas that encode auditory memories communicate with brain areas for learned vocal control. In the songbird, the secondary auditory telencephalic region caudal mesopallium (CM) contains neurons that encode(More)
The aim of this study was to measure the effects of synaptic input on motoneuron firing rate in an unanesthetized cat preparation, where activation of voltage-sensitive dendritic conductances may influence synaptic integration and repetitive firing. In anesthetized cats, the change in firing rate produced by a steady synaptic input is approximately equal to(More)
Long after a cut peripheral nerve reinnervates muscle and restores force production in adult cats, the muscle does not respond reflexively to stretch. Motivated by the likelihood that stretch areflexia is related to problems with sensing and controlling limb position after peripheral neuropathies, we sought to determine the underlying mechanism.(More)
Male songbirds use song to advertise their attractiveness as potential mates, and the properties of those songs have a powerful influence on female mate preferences. One idea is that males may exert themselves maximally in each song performance, consistent with female evaluation and formation of mate preferences being the primary contributors to mate(More)
The aim of this study was to investigate whether activation of spinal motoneurons by sensory afferents of the caudal cutaneous sural (CCS) nerve evokes an atypical motor control scheme. In this scheme, motor units that contract fast and forcefully are driven by CCS afferents to fire faster than motor units that contract more slowly and weakly. This is the(More)
Songbirds are extraordinary vocalists and sensitive listeners, singing to communicate identity, engage other birds in acoustical combat, and attract mates. These processes involve auditory plasticity in that birds rapidly learn to discriminate novel from familiar songs. Songbirds also are one of the few non-human animals that use auditory feedback to learn(More)
Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal(More)
Juveniles sometimes learn behaviors that they cease to express as adults. Whether the adult brain retains a record of experiences associated with behaviors performed transiently during development remains unclear. We addressed this issue by studying neural representations of song in swamp sparrows, a species in which juveniles learn and practice many more(More)