Jonathan D. Zuegel

Learn More
Amplified spontaneous emission (ASE) suppression techniques were utilized to fabricate a double-pass, Yb-doped amplifier with the noise properties of a single-pass amplifier. Simulations based on a rate equation model were used to analyze the ASE and the effectiveness of the suppression techniques. These techniques were implemented in an alignment-free,(More)
A new circuit technique, the distributed waveform generator (DWG), is proposed for low-power ultra-wideband pulse generation, shaping and modulation. It time-interleaves multiple impulse generators, and uses distributed circuit techniques to combine generated wideband impulses. Built-in pulse shaping can be realized by programming the delay and amplitude of(More)
A high-contrast preamplifier based on optical-parametric amplification with a short pump pulse is demonstrated. A gain larger than 10(5) and measurement-limited contrast higher than 10(11) are obtained over a large temporal range extending within less than 10 ps of the peak of the pulse, because of the high instantaneous parametric gain provided by a short(More)
A diode-pumped Nd:YLF regenerative amplifier (regen) has been developed and is in use in the 60-beam, 30-kJ UV Omega laser system's driver line. The high stability, the compactness, and the reliability of this all-solid-state modular design are the key features of this concept. Stable, millijoule-level output-pulse energies with an overall gain of 10(9)(More)
A high-resolution, high-precision beam-shaping system for high-power-laser systems is demonstrated. A liquid-crystal-on-silicon spatial light modulator is run in closed-loop to shape laser-beam amplitude and wavefront. An unprecedented degree of convergence is demonstrated, and important practical issues are discussed. Wavefront shaping for the applications(More)
Single-shot characterization using electro-optic shearing interferometry (EOSI) is shown for pulse widths ranging from their transform limit (0.4 ps) to 200x their limit (85 ps). In EOSI, the spectral phase is reconstructed by interfering two spectrally sheared replicas of the pulse under test, where the shear is produced by applying linear temporal-phase(More)
This paper studies integrated silicon photodiodes (PDs) implemented in standard CMOS technologies. A new PIN PD structure utilizing deep n-well is presented, and compared with conventional vertical and lateral PIN PDs at 850-nm wavelength and different bias conditions. Prototype PDs were fabricated in a 0.18m standard CMOS technology, and their DC, impulse(More)
The concept of an effective Verdet constant is proposed and experimentally validated. The effective Verdet constant of light propagation in a fiber includes contributions from the materials in both the core and the cladding. It is measured in a 25 wt.% terbium-doped-core phosphate fiber to be -6.2+/-0.4 rad/(Tm) at 1,053 nm, which is six times larger than(More)
A distributed transversal filter (DTF) is a good candidate for adaptive processing of ultrafast pulses in wideband systems. In this study, we investigate DTFs for sub-nanosecond pulse shaping and synthesis using standard CMOS technologies. A 5-tap DTF was designed using LC artificial transmission lines. A pulse synthesis algorithm was developed for DTFs. A(More)
K -shell x-ray spectroscopy is used to study the interaction of small-mass copper foil targets (>20x20x2microm;{3}) with a high-intensity (>10;{19}Wcm;{2}) laser pulse. Efficient bulk heating to greater than 200eV is demonstrated using collisional-energy transfer from recirculating fast electrons. K -photon yields and bulk-electron temperatures calculated(More)