Jonathan D. Suter

Learn More
This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms. In particular, it will focus on the optical biosensors that utilize the refractive index change as the sensing transduction signal. Various optical label-free(More)
We have developed a sensitive and inexpensive opto-fluidic ring resonator (OFRR) biosensor using phage as a receptor for analyte detection. Phages have distinct advantages over antibodies as biosensor receptors. First, affinity selection from large libraries of random peptides displayed on phage provides a generic method of discovering receptors for(More)
We have developed an optical microsphere resonator biosensor using aptamer as receptor for the measurement of the important biomolecule thrombin. The sphere surface is modified with anti-thrombin aptamer, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the sphere surface is monitored by the spectral position of(More)
In parallel to a stand-alone microsphere resonator and a planar ring resonator on a wafer, the liquid core optical ring resonator (LCORR) is regarded as the third type of ring resonator that integrates microfluidics with state-of-the-art photonics. The LCORR employs a micro-sized glass capillary with a wall thickness of a few microns. The circular cross(More)
We have demonstrated sensitive label-free virus detection using the opto-fluidic ring resonator (OFRR) sensor. The OFRR is a novel sensing platform that integrates the microfluidics and photonic sensing technology with a low detection limit and small volume. In our experiment, filamentous bacteriophage M13 was used as a safe model system. Virus samples were(More)
We theoretically and experimentally analyze the biomolecule detection capability of the liquid core optical ring resonator (LCORR) as a label-free bio/chemical sensor. We first establish a simple and general linear relationship between the LCORR's bulk refractive index sensitivity (BRIS) and its response to molecule deposition onto the surface, which(More)
The liquid core optical ring resonator (LCORR) has recently shown promise as a high-sensitivity label-free lab-on-a-chip biological-chemical sensor. We investigate experimentally and theoretically the temperature dependence of the LCORR to establish a noise baseline, which will enable us to implement a temperature stabilization mechanism to reduce the(More)
We demonstrated quantitative real-time label-free detection of DNA sequences using the liquid core optical ring resonator (LCORR) sensor. The LCORR is a recently developed sensing platform that integrates microfluidics and photonic sensing technology with low detection limit and sub-nanoliter detection volume. We analyzed experimentally and theoretically(More)
We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section(More)
The opto-fluidic ring resonator (OFRR) is a sensitive label-free optical biosensor that is uniquely well suited for photonic and fluidic integration. For the first time we have explored the utility of this novel instrument for the analysis of methylation in oligonucleotides using the MBD-2 (methyl binding) protein as the capture molecule. This application(More)