Jonathan D Cooper

Learn More
Age-related degeneration of basal forebrain cholinergic neurons (BFCNs) contributes to cognitive decline in Alzheimer's disease and Down's syndrome. With aging, the partial trisomy 16 (Ts65Dn) mouse model of Down's syndrome exhibited reductions in BFCN size and number and regressive changes in the hippocampal terminal fields of these neurons with respect to(More)
The connections of the laterodorsal tegmental nucleus (LDTg) have been investigated using anterograde and retrograde lectin tracers with immunocytochemical detection. Inputs to LDTg were found from frontal cortex, diagonal band, preoptic areas, lateral hypothalamus, lateral mamillary nucleus, lateral habenula; the interpeduncular nucleus, ventral tegmental(More)
Batten disease, a degenerative neurological disorder with juvenile onset, is the most common form of the neuronal ceroid lipofuscinoses. Mutations in the CLN3 gene cause Batten disease. To facilitate studies of Batten disease pathogenesis and treatment, a murine model was created by targeted disruption of the Cln3 gene. Mice homozygous for the disrupted(More)
Emerging evidence suggests that the p75 neurotrophin receptor (p75NTR) mediates cell death; however, it is not known whether p75NTR negatively regulates other neuronal phenotypes. We found that mice null for p75NTR displayed highly significant increases in the size of basal forebrain cholinergic neurons, including those that are TrkA-positive. Cholinergic(More)
Afferent pathways to the rostral reticular thalamic nucleus (Rt) in the rat were studied using anterograde and retrograde lectin tracing techniques, with sensitive immunocytochemical methods. The analysis was carried out to further investigate previously described subregions of the reticular thalamic nucleus, which are related to subdivisions of the dorsal(More)
As a result of genome-wide association studies in larger sample sets, there has been an increase in identifying genes that influence susceptibility to individual immune-mediated diseases, as well as evidence that some genes are associated with more than one disease. In this study, we tested 17 single nucleotide polymorphisms (SNP) from 16 gene regions that(More)
Infantile neuronal ceroid lipofuscinosis (INCL) is one of a group of fatal hereditary lysosomal storage disorders. Palmitoyl protein thioesterase 1 null mutant mice (PPT1-/-) now exist that accurately recapitulate many important disease features. The severely affected PPT1-/- mouse CNS exhibited reduced volume of both cortical and subcortical regions, but(More)
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are fatal inherited neurodegenerative diseases characterized by gross brain atrophy, blindness, and intracellular accumulation of lysosome-derived storage bodies. A CLN6 form in sheep is studied as a large animal model of the human diseases. This study describes neuropathological changes in brains(More)
In previous experiments it has been demonstrated that the synthesis of BDNF (brain-derived neurotrophic factor) and NGF in neurons of the hippocampus is regulated by neuronal activity. The glutamate system is predominantly responsible for upregulation and the GABAergic system for downregulation both in vitro and in vivo (Zafra et al., 1990, 1991). The aim(More)
Infantile neuronal ceroid lipofuscinosis (INCL) is caused by deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). We have investigated the onset and progression of pathological changes in Ppt1 deficient mice (Ppt1-/-) and the development of their seizure phenotype. Surprisingly, cortical atrophy and neuron loss occurred only late in(More)