Jonathan C. Vacek

Learn More
Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase-9 (MMP-9), which degrades the matrix and leads to blood-brain barrier dysfunction. Hcy competitively binds to gamma-aminbutyric acid (GABA) receptors, which are excitatory(More)
Autophagy is an important process in the pathogenesis of cardiovascular diseases; however, the proximal triggers for mitochondrial autophagy were unknown. The N-methyl-d-aspartate receptor 1 (NMDA-R1) is a receptor for homocysteine (Hcy) and plays a key role in cardiac dysfunction. Cardiac-specific deletion of NMDA-R1 has been shown to ameliorate(More)
We reported previously that although there is disruption of coordinated cardiac hypertrophy and angiogenesis in transition to heart failure, matrix metalloproteinase (MMP)-9 induced antiangiogenic factors play a vital role in this process. Previous studies have shown the cardioprotective role of hydrogen sulfide (H₂S) in various cardiac diseases, but its(More)
Although matrix metalloproteinase (MMPs) and tissue inhibitor of metalloproteinase (TIMPs) play a vital role in tumour angiogenesis and TIMP-3 caused apoptosis, their role in cardiac angiogenesis is unknown. Interestingly, a disruption of co-ordinated cardiac hypertrophy and angiogenesis contributed to the transition to heart failure, however, the(More)
Remodeling by its very nature implied synthesis and degradation of extracellular matrix (ECM) proteins. Although oxidative stress, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) have been implicated in vascular remodeling, the differential role of MMPs versus TIMPs and oxidative stress in vascular remodeling was unclear.(More)
Deficiencies in folate lead to increased serum concentrations of homocysteine (Hcy), which is known as hyperhomocysteinemia (HHcy), is associated with bone disorders. Although, Hcy accumulates collagen in bone and contribute to decrease in bone strength. The mechanism of Hcy induced bone loss and remodeling is unclear. Therefore, the present study was aimed(More)
High plasma homocysteine levels are a known risk factor in heart failure and sudden cardiac death. The G proteins, G(s) (stimulatory) and G(i) (inhibitory), are involved in calcium regulation; overexpression has pathological consequences. The aims of this study were to examine the differential expression of G(s) G protein and G(i) in the hearts of(More)
High levels of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), are correlated with an increase in extracellular matrix remodelling (ECM) via the matrix metalloproteinases (MMPs) and plasminogen/plasmin system. This results in an increase deposition of collagen that leads to endothelial-myocyte (EM) and myocyte-myocyte (MM) uncoupling; the(More)
Hypertensive cerebropathy is a pathological condition associated with cerebral edema and disruption of the blood–brain barrier. However, the molecular pathways leading to this condition remains obscure. We hypothesize that MMP-9 inhibition can help reducing blood pressure and endothelial disruption associated with hypertensive cerebropathy. Dahl(More)
Homocysteine (Hcy) causes endothelial dysfunction by inducing oxidative stress in most neurodegenerative disorders. This dysfunction is highly correlated with mitochondrial dynamics such as fusion and fission. However, there are no strategies to prevent Hcy-induced mitochondrial remodeling. Tetrahydrocurcumin (THC) is an anti-inflammatory and anti-oxidant(More)