Jonathan C Crowhurst

Learn More
Changes in the electronic configuration of iron at high pressures toward a spin-paired state within host minerals ferropericlase and silicate perovskite may directly influence the seismic velocity structure of Earth's lower mantle. We measured the complete elastic tensor of ferropericlase, (Mg(1-x),Fe(x))O (x = 0.06), through the spin transition of iron,(More)
We have used x-ray diffraction to determine the structure factor of water along its melting line to a static pressure of 57 GPa (570 kbar) and a temperature of more than 1500 K, conditions which correspond to the lower mantle of the Earth, and the interiors of Neptune and Uranus up to a depth of 7000 km. We have also performed corresponding first principles(More)
Raman spectroscopy in a laser heated diamond anvil cell and first principles molecular dynamics simulations have been used to study water in the temperature range 300 to 1500 K and at pressures to 56 GPa. We find a substantial decrease in the intensity of the O-H stretch mode in the liquid phase with pressure, and a change in slope of the melting line at 47(More)
The application of static high pressure provides a means to precisely control and investigate many fundamental and unique properties of nanoparticles. CdSe is a model quantum-dot system, the behavior of which under high pressure has been extensively studied; however, the effect of nonuniform stresses on this system has not been fully appreciated.(More)
Transition metal nitrides are of great technological and fundamental importance because of their strength and durability and because of their useful optical, electronic, and magnetic properties. We have evaluated a recently synthesized platinum nitride (PtN) that was shown to have a large bulk modulus, and we propose a structure that is isostructural with(More)
We have determined the melting temperature of formic acid (HCOOH) as a function of pressure to 8.5 GPa using infrared absorption spectroscopy, Raman spectroscopy and visual observation of samples in a resistively heated diamond-anvil cell. The experimentally determined incongruent melting curve compares favorably with a two-phase thermodynamic model.(More)
Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel(More)
Raman spectra of solid and fluid nitrogen to pressures up to 120 GPa and temperatures up to 2500 K reveal that the melting line exhibits a maximum near 70 GPa, followed by a triple point near 87 GPa, after which the melting temperature rises again. Fluid nitrogen remains molecular over the entire pressure range studied, and there is no sign of a fluid-fluid(More)
We have directly resolved shock structures in pure aluminum in the first few hundred picoseconds subsequent to a dynamic load at peak stresses up to 43 GPa and strain rates in excess of 10(10)  s(-1). For strong shocks we obtain peak stresses, strain rates, and rise times. From these data, we directly validate the invariance of the dissipative action in the(More)
We report observations of shock compressed, unreacted hydrogen peroxide at pressures up to the von Neumann pressure for a steady detonation wave, using ultrafast laser-driven shock wave methods. At higher laser drive energy we find evidence of exothermic chemical reactivity occurring in less than 100 ps after the arrival of the shock wave in the sample. The(More)