Jonathan Berant

Learn More
In this paper, we train a semantic parser that scales up to Freebase. Instead of relying on annotated logical forms, which is especially expensive to obtain at large scale, we learn from question-answer pairs. The main challenge in this setting is narrowing down the huge number of possible logical predicates for a given question. We tackle this problem in(More)
A central challenge in semantic parsing is handling the myriad ways in which knowledge base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text paired with knowledge base information. Our goal is to exploit the much larger amounts of raw text not tied to any knowledge base. In this paper, we turn semantic parsing on(More)
How do we build a semantic parser in a new domain starting with zero training examples? We introduce a new methodology for this setting: First, we use a simple grammar to generate logical forms paired with canonical utterances. The logical forms are meant to cover the desired set of compositional operators, and the canonical utterances are meant to capture(More)
We propose a global algorithm for learning entailment relations between predicates. We define a graph structure over predicates that represents entailment relations as directed edges, and use a global transitivity constraint on the graph to learn the optimal set of edges, by formulating the optimization problem as an Integer Linear Program. We motivate this(More)
Harnessing the statistical power of neural networks to perform language understanding and symbolic reasoning is difficult, when it requires executing efficient discrete operations against a large knowledge-base. In this work, we introduce a Neural Symbolic Machine (NSM), which contains (a) a neural “programmer”, i.e., a sequence-to-sequence model that maps(More)
Learning entailment rules is fundamental in many semantic-inference applications and has been an active field of research in recent years. In this paper we address the problem of learning transitive graphs that describe entailment rules between predicates (termed entailment graphs). We first identify that entailment graphs exhibit a “tree-like” property and(More)
Machine reading calls for programs that read and understand text, but most current work only attempts to extract facts from redundant web-scale corpora. In this paper, we focus on a new reading comprehension task that requires complex reasoning over a single document. The input is a paragraph describing a biological process, and the goal is to answer(More)
A large body of recent research has been investigating the acquisition and application of applied inference knowledge. Such knowledge may be typically captured as entailment rules, applied over syntactic representations. Efficient inference with such knowledge then becomes a fundamental problem. Starting out from a formalism for entailment-rule application(More)