Learn More
The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four(More)
The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally(More)
Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine,(More)
Synergistic interactions between multiple limiting resources are common, highlighting the importance of co-limitation as a constraint on primary production. Our concept of resource limitation has shifted over the past two decades from an earlier paradigm of single-resource limitation towards concepts of co-limitation by multiple resources, which are(More)
Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use(More)
Although trophic cascades (indirect effects of predators on plants via herbivores) occur in a wide variety of food webs, the magnitudes of their effects are often quite variable. We compared the responses of herbivore and plant communities to predator manipulations in 102 field experiments in six different ecosystems: lentic (lake and pond), marine, and(More)
Ecologists have greatly advanced our understanding of the processes that regulate trophic structure and dynamics in ecosystems. However, the causes of systematic variation among ecosystems remain controversial and poorly elucidated. Contrasts between aquatic and terrestrial ecosystems in particular have inspired much speculation, but only recent empirical(More)
Consumer and resource control of diversity in plant communities have long been treated as alternative hypotheses. However, experimental and theoretical evidence suggests that herbivores and nutrient resources interactively regulate the number and relative abundance of coexisting plant species. Experiments have yielded divergent and often contradictory(More)
The concept of trophic levels is one of the oldest in ecology and informs our understanding of energy flow and top-down control within food webs, but it has been criticized for ignoring omnivory. We tested whether trophic levels were apparent in 58 real food webs in four habitat types by examining patterns of trophic position. A large proportion of taxa(More)
If natural communities are assembled according to deterministic rules, coexisting species will represent a nonrandom subset of the potential species pool. We tested for signatures of assembly rules in the distribution of species' traits in Pacific rockfish (Sebastes spp.) assemblages. We used morphology, dietary niche (estimated with stable nitrogen(More)