Jonathan B. Gilbert

Learn More
Cellular "backpacks" are a new type of anisotropic, nanoscale thickness microparticle that may be attached to the surface of living cells creating a "bio-hybrid" material. Previous work has shown that these backpacks do not impair cell viability or native functions such as migration in a B and T cell line, respectively. In the current work, we show that(More)
X-ray photoelectron spectroscopy (XPS) depth profiling with C60(+) sputtering was used to resolve the lithium-ion distribution in the nanometer-scale domain structures of block polymer electrolyte thin films. The electrolytes of interest are mixtures of lithium trifluoromethanesulfonate and lamellar-forming polystyrene-poly(oligo(oxyethylene)methacrylate)(More)
We demonstrate a reduction in the measured inner wall shear stress in moderately turbulent Taylor-Couette flows by depositing sprayable superhydrophobic microstructures on the inner rotor surface. The magnitude of reduction becomes progressively larger as the Reynolds number increases up to a value of 22% at Re=8.0×10(4). We show that the mean skin friction(More)
Tubular particles presenting heterogeneous regions of chemistry on the tube-ends versus the side are fabricated and are shown to control the particle orientation on the surface of live lymphocytes. Controlling the orientation of anisotropic microparticles on cell surfaces is of interest for biomedical applications and drug delivery in particular, since it(More)
Cellular backpacks are small, anisotropic polymer patches, formed by a unique combination of photolithography and polyelectrolyte multilayers. These patches are hundreds of nanometers thick and microns wide. They are designed to strongly and specifically attach to the surface of many immune system cells and can contain a wide assortment of materials such as(More)
  • 1