Learn More
The sequence and structural selectivity of 15 different DNA binding agents was explored using a novel, thermodynamically rigorous, competition dialysis procedure. In the competition dialysis method, 13 different nucleic acid structures were dialyzed against a common ligand solution. More ligand accumulated in the dialysis tube containing the structural form(More)
Absorbance and fluorescence methods, circular dichroism, UV melting experiments, viscosity, and competition dialysis were used to study the interaction of delta and lambda tris(phenanthroline)ruthenium(II) with DNA. The results of these studies indicated that both isomers bind to DNA by a single mode. The two isomers differ, however, in their effect on the(More)
We have used equilibrium dialysis and fluorescence and absorbance titration to study the interaction of daunomycin with DNA. Our data at 200 mM Na+ are best fit by the neighbor exclusion model, with K = 7.0 x 10(5) M-1 and an exclusion parameter of three to four base pairs. The binding is dependent on ionic strength, with d log K/d log [Na+] = -0.84, from(More)
A complete characterization of DNA binding agents requires that their mode of binding to DNA be established. In the absence of high resolution structural data, the mode of binding is, of necessity, usually inferred indirectly from various solution studies. The purpose of this study is to show that only certain methods can be used reliably to infer the DNA(More)
Isothermal titration calorimetry, ITC, has been used to determine the thermodynamics (DeltaG, DeltaH, and -TDeltaS) for binding netropsin to a number of DNA constructs. The DNA constructs included: six different 20-22mer hairpin forming sequences and an 8-mer DNA forming a duplex dimer. All DNA constructs had a single -AT-rich netropsin binding with one of(More)
A number of small molecules bind directly and selectively to DNA, acting as chemotherapeutic agents by inhibiting replication, transcription or topoisomerase activity. Two common binding modes for these small molecules are intercalation or groove-binding. Intercalation results from insertion of a planar aromatic substituent between DNA base pairs, with(More)
In this review, we give an overview of recent literature on the structure and stability of unimolecular G-rich quadruplex structures that are relevant to drug design and for in vivo function. The unifying theme in this review is energetics. The thermodynamic stability of quadruplexes has not been studied in the same detail as DNA and RNA duplexes, and there(More)
We show that nucleic acid structures may be conveniently and inexpensively characterized by their UV thermal difference spectra. A thermal difference spectrum (TDS) is obtained for a nucleic acid by simply recording the ultraviolet absorbance spectra of the unfolded and folded states at temperatures above and below its melting temperature (T(m)). The(More)