Jonathan Alvarsson

Learn More
BACKGROUND Contemporary biological research integrates neighboring scientific domains to answer complex questions in fields such as systems biology and drug discovery. This calls for tools that are intuitive to use, yet flexible to adapt to new tasks. RESULTS Bioclipse is a free, open source workbench with advanced features for the life sciences. Version(More)
BACKGROUND Semantic web technologies are finding their way into the life sciences. Ontologies and semantic markup have already been used for more than a decade in molecular sciences, but have not found widespread use yet. The semantic web technology Resource Description Framework (RDF) and related methods show to be sufficiently versatile to change that(More)
BACKGROUND The Blue Obelisk movement was established in 2005 as a response to the lack of Open Data, Open Standards and Open Source (ODOSOS) in chemistry. It aims to make it easier to carry out chemistry research by promoting interoperability between chemistry software, encouraging cooperation between Open Source developers, and developing community(More)
SUMMARY Bioclipse, a graphical workbench for the life sciences, provides functionality for managing and visualizing life science data. We introduce Bioclipse-R, which integrates Bioclipse and the statistical programming language R. The synergy between Bioclipse and R is demonstrated by the construction of a decision support system for anticancer drug(More)
BACKGROUND Compound profiling and drug screening generates large amounts of data and is generally based on microplate assays. Current information systems used for handling this are mainly commercial, closed source, expensive, and heavyweight and there is a need for a flexible lightweight open system for handling plate design, and validation and preparation(More)
When evaluating a potential drug candidate it is desirable to predict target interactions in silico prior to synthesis in order to assess, e.g., secondary pharmacology. This can be done by looking at known target binding profiles of similar compounds using chemical similarity searching. The purpose of this study was to construct and evaluate the performance(More)
The increasing size of datasets in drug discovery makes it challenging to build robust and accurate predictive models within a reasonable amount of time. In order to investigate the effect of dataset sizes on predictive performance and modelling time, ligand-based regression models were trained on open datasets of varying sizes of up to 1.2 million chemical(More)
Alvarsson, J. 2015. Ligand-based Methods for Data Management and Modelling. Drug discovery is a complicated and expensive process in the billion dollar range. One way of making the drug development process more efficient is better information handling, modelling and visualisation. The majority of todays drugs are small molecules, which interact with drug(More)
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon(More)
QSAR modeling using molecular signatures and support vector machines with a radial basis function is increasingly used for virtual screening in the drug discovery field. This method has three free parameters: C, γ, and signature height. C is a penalty parameter that limits overfitting, γ controls the width of the radial basis function kernel, and the(More)
  • 1