Jonathan A. Deane

Learn More
Antibodies against nuclear self-antigens are characteristic of systemic autoimmunity, although mechanisms promoting their generation and selection are unclear. Here, we report that B cells containing the Y-linked autoimmune accelerator (Yaa) locus are intrinsically biased toward nucleolar antigens because of increased expression of TLR7, a single-stranded(More)
Cells of the immune system carry out diverse functions that are controlled by surface receptors for antigen, costimulatory molecules, cytokines, chemokines, and other ligands. A shared feature of signal transduction downstream of most receptors on immune cells, as in nonhematopoietic cell types, is the activation of phosphoinositide 3-kinase (PI3K). The(More)
Nucleic acid-binding innate immune receptors such as Toll-like receptor 7 (TLR7) and TLR9 have been implicated in the development of some autoimmune pathologies. The Y chromosome-linked genomic modifier Yaa, which correlates with a duplication of Tlr7 and 16 other genes, exacerbates lupus-like syndromes in several mouse strains. Here we demonstrated that(More)
BCR-ABL and v-ABL are oncogenic forms of the Abl tyrosine kinase that can cause leukemias in mice and humans. ABL oncogenes trigger multiple signaling pathways whose contribution to transformation varies among cell types. Activation of phosphoinositide 3-kinase (PI3K) is essential for ABL-dependent proliferation and survival in some cell types, and global(More)
Toll-like receptor 7 (Tlr7) has been linked to systemic lupus disease incidence in humans and mice, but how TLR7 potentiates autoimmunity is unclear. We used a Tlr7 transgenic (tg) mouse model to investigate the cellular and molecular events required to induce spontaneous autoimmunity through increased TLR7 activity. We determined that Tlr7 exerts(More)
Class Ia phosphoinositide 3-kinases (PI3Ks) are heterodimers of p110 catalytic and p85 regulatory subunits that mediate a variety of cellular responses to growth and differentiation factors. Although embryonic development is not impaired in mice lacking all isoforms of the p85alpha gene (p85alpha-/- p55alpha-/- p50alpha-/-) or in mice lacking the p85beta(More)
Phosphoinositide 3-kinase activation is important for lymphocyte proliferation and survival. Disrupting the gene that encodes the major phosphoinositide 3-kinase regulatory isoform p85alpha impairs B cell development and proliferation. However, T cell functions are intact in the absence of p85alpha. In this study, we test the hypothesis that the related(More)
The immune system requires precise regulation of activating and inhibitory signals so that it can mount effective responses against pathogens while ensuring tolerance to self-components. Some of the most potent activation signals are triggered by innate immune molecules, particularly those in the TLR family. Recent studies have shown that engagement of TLRs(More)
Recruitment of PI3K to the cell membrane is an indispensable step in normal lymphocyte proliferation and activation. In this study we identify PI3K as an important signaling molecule for maintaining basal T and B lymphocyte motility and homing in the intact lymph node. Pharmacological inhibition of PI3K catalytic isoforms exerted broad effects on basal(More)
Type I IFNs (IFN-I) are normally produced during antiviral responses, yet high levels of chronic IFN-I expression correlate with autoimmune disease. A variety of viral sensors generate IFN-I in their response, but other than TLRs, it is not fully known which pathways are directly involved in the development of spontaneous immune pathologies. To further(More)